Phonon and electron components of the thermal conductivity of tantalum at intermediate temperatures

Thermal conductivity, electrical resistivity, and absolute Seebeck-coefficient values for Ta and four Ta-base alloys are reported. The data, which cover the temperature range 80\char22{}400 K, were analyzed to identify the phonon and electron contributions to the thermal conductivity of Ta. Reflecting the strong electron-phonon interaction, the phonon thermal conductivity is rather small and equal to about $\frac{2}{3}$ of the prediction of a theoretical formula. At the highest temperatures investigated, the electronic thermal conductivity and electrical resistivity are consistent with the Sommerfeld-Lorenz number. The electrical resistivity and Seebeck-coefficient results can be satisfactorily fitted to standard theoretical formulas, and these results indicate that deviations from Matthiessen's rule are small and positive.

[1]  D. Yarbrough,et al.  Experimental determination of the phonon and electron components of the thermal conductivity of bcc iron , 1981 .

[2]  F. J. Pinski,et al.  Calculated electrical and thermal resistivities of Nb and Pd , 1981 .

[3]  W. Butler,et al.  Electron-phonon interaction and lattice thermal conductivity , 1978 .

[4]  Roger H. Taylor,et al.  Supposed failure of the Boltzmann equation in Nb , 1977 .

[5]  W. Butler Electron-phonon coupling in the transition metals: Electronic aspects , 1977 .

[6]  R. K. Williams,et al.  Thermal conductivity, electrical resistivity, and Seebeck coefficient of high‐purity chromium from 280 to 1000 K , 1977 .

[7]  P. B. Allen Failure of the Boltzmann equation for nonlinear resistivity , 1976 .

[8]  R. Cappelletti,et al.  Superconductivity in ZrxNb1−2xMox alloys: Possible dominance of a soft phonon mode , 1975 .

[9]  R. Graves,et al.  Precision measurements of the thermal conductivity, electrical resistivity, and Seebeck coefficient from 80 to 400 K and their application to pure molybdenum , 1974 .

[10]  Paul G. Klemens,et al.  Thermal Conductivity of Complex Dielectric Crystals , 1973 .

[11]  R. Graves,et al.  Absolute Seebeck coefficient of platinum from 80 to 340 K and the thermal and electrical conductivities of lead from 80 to 400 K , 1973 .

[12]  T. Matsumura,et al.  High-Temperature Transport Properties of Palladium , 1972 .

[13]  J. B. Sousa Lattice thermal conductivity of Ta-Nb and Nb-Mo solid solution alloys in normal and superconducting states , 1969 .

[14]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[15]  R. Graves,et al.  THERMAL CONDUCTIVITY AND ELECTRICAL RESISTIVITY OF HIGH-PURITY COPPER FROM 78 TO 400 °K , 1967 .

[16]  D. Mcelroy,et al.  Comparison of the Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of a High‐Purity Iron and an Armco Iron to 1000°C , 1966 .

[17]  J. Matthew,et al.  Scattering of Long-Wavelength Phonons by Point Imperfections in Crystals , 1965 .

[18]  Carl L. Julian,et al.  Theory of Heat Conduction in Rare-Gas Crystals , 1965 .

[19]  R. Finch,et al.  The specific heats and resistivities of molybdenum, tantalum, and rhenium☆ , 1964 .

[20]  Sow-Hsin Chen,et al.  Lattice vibrations of tungsten , 1964 .

[21]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[22]  W. Desorbo SIZE FACTOR AND SUPERCONDUCTING PROPERTIES OF SOME TRANSITION METAL SOLUTIONS , 1963 .

[23]  G. White,et al.  Electrical and thermal resistivity of the transition elements at low temperatures , 1959, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  C. G. Losa,et al.  Ergebnisse der Tieftemperaturforschung XVI. Die Atom- und Elektronenwärme des Tantals zwischen 10° und 273° K , 1955 .

[25]  A. H. Wilson The second order electrical effects in metals , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.