TECHNOLOGIES TO REDUCE EMISSIONS OF NOXIOUS GASES RESULTING FROM LIVESTOCK FARMING

During the animal production, which is increasingly expanding, it comes to harmful gas emissions. These emissions relate to both greenhouse and odorous gases emissions. The resulting volatile compounds also contribute to the formation of acid rain, eutrophication of water aquens and soils, corrosion in livestock buildings and damage of the ozone layer. Considering the existing problem, solutions neutralizing the impact of animal production on the environment, are being looked for. Moreover, numerous activities in the way of nutritional and technological solutions are undertaken. Nutritional techniques are based on diet modification and require continuous monitoring of livestock animals. On the other hand, technological solutions are taking action to reduce emissions of gases from livestock buildings and slurry management. The proposed ways of disposing slurry result in different effects in terms of reduction of dangerous gases. They require the implementation of additional actions leading, among other things, to the proper animal waste disposal.

[1]  R. Melse,et al.  Evaluation of four farm-scale systems for the treatment of liquid pig manure , 2005 .

[2]  J. M. Owens,et al.  Renewable methane from anaerobic digestion of biomass , 1997 .

[3]  P. Mielcarek Weryfikacja wartości współczynników emisji amoniaku i gazów cieplarnianych z produkcji zwierzęcej , 2012 .

[4]  P. Kaparaju,et al.  Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland , 2011 .

[5]  T. Osada,et al.  Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process , 1995 .

[6]  R. Hegarty Reducing rumen methane emissions through elimination of rumen protozoa , 1999 .

[7]  J. Hoigne,et al.  Rate constants of reactions of ozone with organic and inorganic compounds in water—I. Non-dissociating organic compounds , 1983 .

[8]  B. Mattiasson,et al.  The energy balance in farm scale anaerobic digestion of crop residues at 11–37 °C , 2007 .

[9]  S. Stężała,et al.  Próba wytypowania efektywnego, biodegradowalnego adsorbentu i parametrow adsorpcji amoniaku z fazy gazowej powietrze/amoniak , 2004 .

[10]  U. Wanka,et al.  Slurry Covers to reduce Ammonia Emission and Odour Nuisance , 1999 .

[11]  J. Martínez,et al.  Effect of covering pig slurry stores on the ammonia emission processes. , 2003, Bioresource technology.

[12]  J. Holm‐Nielsen,et al.  The future of anaerobic digestion and biogas utilization. , 2009, Bioresource technology.

[13]  J. Eadie,et al.  Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions , 1984, British Journal of Nutrition.

[14]  C. Burton The potential contribution of separation technologies to the management of livestock manure , 2007 .

[15]  Manfred Trimborn,et al.  Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry , 2006 .

[16]  N. M. Ngwabie,et al.  Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows , 2011 .

[17]  R. Brunsch,et al.  Greenhouse gas emissions from covered slurry compared with uncovered during storage , 2006 .

[18]  J. B. Gerrish,et al.  The Use of Ozone to reduce the Concentration of Malodorous Metabolites in Swine Manure Slurry , 1999 .

[19]  A. Kolasa-Więcek Prognozowanie wielkości emisji CH4 z fermentacji jelitowej oraz hodowli zwierząt gospodarskich z wykorzystaniem sztucznej sieci neuronowej Flexible Byesian Models , 2011 .

[20]  Techniques to Reduce the Ammonia Emission from a Cowshed with Tied Dairy Cattle , 2005 .

[21]  Morten Birkved,et al.  Choosing co-substrates to supplement biogas production from animal slurry--a life cycle assessment of the environmental consequences. , 2014, Bioresource technology.

[22]  K. Knowlton,et al.  Manure nutrient excretion by lactating cows fed exogenous phytase and cellulase. , 2007, Journal of dairy science.

[23]  L. Elsgaard,et al.  The fate of sulfate in acidified pig slurry during storage and following application to cropped soil. , 2008, Journal of environmental quality.

[24]  W. Rzeźnik Ograniczanie emisji zanieczyszczeń gazowych z tuczarni poprzez zastosowanie instalacji do odzysku ciepła , 2013 .

[25]  S. Wieczorek Badanie wpływu stężenia amoniaku na efektywność jego adsorpcji na złożu kory drzewnej , 2007 .

[26]  Martin Kampmann,et al.  Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? , 2003, Water research.

[27]  Z. Kowalski,et al.  Wpływ gnojowicy na środowisko naturalne - potencjalne zagrożenia , 2011 .

[28]  Steffen Feedstocks for Anaerobic Digestion , 2000 .

[29]  A. Feilberg,et al.  The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS , 2011 .

[30]  J. P. Frost,et al.  Effect of separation and acidification of cattle slurry on ammonia volatilization and on the efficiency of slurry nitrogen for herbage production , 1990, The Journal of Agricultural Science.

[31]  Albert J. Heber,et al.  EFFECT OF A MANURE ADDITIVE ON AMMONIA EMISSION FROM SWINE FINISHING BUILDINGS , 2000 .

[32]  S. Wieczorek Badania procesu adsorpcji amoniaku zawartego w mieszaninie gazów znad powierzchni gnojowicy , 2009 .

[33]  D. Demeyer,et al.  Control of rumen methanogenesis , 1996, Environmental monitoring and assessment.

[34]  F. Béline,et al.  Nitrogen transformations during biological aerobic treatment of pig slurry: effect of intermittent aeration on nitrous oxide emissions. , 2002, Bioresource technology.

[35]  Kaiying Wang,et al.  Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry , 2014 .

[36]  J. P. Frost,et al.  Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries , 1989, The Journal of Agricultural Science.

[37]  A. Feilberg,et al.  Effect of low-dose liquid ozonation on gaseous emissions from pig slurry , 2012 .

[38]  Z. Kowalski,et al.  Rozdział gnojowicy na frakcje przy użyciu sedymentacji i filtracji ciśnieniowej , 2012 .

[39]  Mikael Lantz,et al.  The prospects for an expansion of biogas systems in Sweden--Incentives, barriers and potentials , 2007 .

[40]  Z. Gołaś,et al.  Ekologiczne konsekwencje koncentracji produkcji trzody chlewnej , 2008 .

[41]  T. Steenhuis,et al.  Nitrous oxide from aerated dairy manure slurries: Effects of aeration rates and oxic/anoxic phasing. , 2008, Bioresource technology.

[42]  Yi Liu,et al.  Biogas fermentation of swine slurry based on the separation of concentrated liquid and low content liquid , 2012 .

[43]  T. Kuczyński,et al.  Wpływ dodatków do ściółki słomiastej na zawartość makroelementów w oborniku indyczym przed i po składowaniu , 2007 .

[44]  W. Czekała Stan aktualny i tendencje rozwoju w gospodarce nawozami naturalnymi w Polsce , 2015 .

[45]  M. Andersson Reducing ammonia emissions by cooling of manure in manure culverts , 1998, Nutrient Cycling in Agroecosystems.

[46]  Peter Kai,et al.  A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions , 2008 .

[47]  Y. Dong,et al.  Reducing Methane Emissions from Ruminant Animals , 1998 .

[48]  P. Weiland Biogas production: current state and perspectives , 2009, Applied Microbiology and Biotechnology.

[49]  Rpjm Rob Raven,et al.  Biogas plants in Denmark: successes and setbacks , 2007 .

[50]  Daniel I. Massé,et al.  The use of membranes for the treatment of manure: a critical literature review , 2007 .

[51]  Damian Janczak,et al.  Problemy zasad klasyfikacji odpadów organicznych , 2013 .

[52]  B. Szejniuk,et al.  Wpływ preparatu EM na przeżywalność bakterii wskaźnikowych Salmonella Senftenberg W 775 w gnojowicy bydlęcej , 2010 .

[53]  J. Dach,et al.  Analiza możliwości zagospodarowania pofermentu z biogazowni , 2012 .