Conservation and divergence in molecular mechanisms of axis formation.

Genetic screens in Drosophila melanogaster have helped elucidate the process of axis formation during early embryogenesis. Axis formation in the D. melanogaster embryo involves the use of two fundamentally different mechanisms for generating morphogenetic activity: patterning the anteroposterior axis by diffusion of a transcription factor within the syncytial embryo and specification of the dorsoventral axis through a signal transduction cascade. Identification of Drosophila genes involved in axis formation provides a launch-pad for comparative studies that examine the evolution of axis specification in different insects. Additionally, there is similarity between axial patterning mechanisms elucidated genetically in Drosophila and those demonstrated for chordates such as Xenopus. In this review we examine the postfertilization mechanisms underlying axis specification in Drosophila. Comparative data are then used to ask whether aspects of axis formation might be derived or ancestral.

[1]  The Bacteria , 1881, Nature.

[2]  J. W. Saunders The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. , 1948, The Journal of experimental zoology.

[3]  D. Anderson development of holometabolous insects , 1972 .

[4]  Ralph I. Smith,et al.  Embryology and Phylogeny in Annelids and Arthropods , 1974 .

[5]  D. Summerbell A quantitative analysis of the effect of excision of the AER from the chick limb-bud. , 1974, Journal of embryology and experimental morphology.

[6]  H. Berg How Bacteria Swim , 1975 .

[7]  K. Sander Specification of the Basic Body Pattern in Insect Embryogenesis1 , 1976 .

[8]  C. Nüsslein-Volhard,et al.  A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila , 1980, Nature.

[9]  J. Gerhart,et al.  A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis , 1981, Nature.

[10]  P. Simpson,et al.  Mutations and Chromosomal Rearrangements Affecting the Expression of Snail, a Gene Involved in Embryonic Patterning in DROSOPHILA MELANOGASTER. , 1984, Genetics.

[11]  K. Anderson,et al.  Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product , 1985, Cell.

[12]  G. Struhl,et al.  A molecular gradient in early Drosophila embryos and its role in specifying the body pattern , 1986, Nature.

[13]  W. Gelbart,et al.  A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-β family , 1987, Nature.

[14]  W. Gelbart,et al.  The decapentaplegic gene is required for dorsal-ventral patterning of the Drosophila embryo. , 1987, Genes & development.

[15]  W. Gelbart,et al.  Decapentaplegic transcripts are localized along the dorsal‐ventral axis of the Drosophila embryo. , 1987, The EMBO journal.

[16]  B. Thisse,et al.  The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. , 1987, Nucleic acids research.

[17]  M. Frasch,et al.  Maternal regulation of zerknüllt: a homoeobox gene controlling differentiation of dorsal tissues in Drosophila , 1987, Nature.

[18]  Marek Mlodzik,et al.  Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis , 1987, Cell.

[19]  R. Steward Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. , 1987, Science.

[20]  B. Thisse,et al.  Genes of the Drosophila maternal dorsal group control the specific expression of the zygotic gene twist in presumptive mesodermal cells , 1987 .

[21]  R. Steward,et al.  The dorsal protein is distributed in a gradient in early drosophila embryos , 1988, Cell.

[22]  E. Wieschaus,et al.  short gastrulation, a mutation causing delays in stage-specific cell shape changes during gastrulation in Drosophila melanogaster. , 1988, Developmental biology.

[23]  K. Anderson,et al.  The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein , 1988, Cell.

[24]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[25]  J. Gurdon,et al.  A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest , 1989, Cell.

[26]  M. Levine,et al.  The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila , 1989, Cell.

[27]  E. Wieschaus,et al.  Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. , 1989, Genetics.

[28]  Diethard Tautz,et al.  Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene , 1989, Nature.

[29]  K. Anderson,et al.  The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo , 1989, Cell.

[30]  Ruth Lehmann,et al.  The Drosophila posterior-group gene nanos functions by repressing hunchback activity , 1989, Nature.

[31]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[32]  D. Tautz,et al.  Comparison of the gap segmentation gene hunchback between Drosophila melanogaster and Drosophila virilis reveals novel modes of evolutionary change. , 1989, The EMBO journal.

[33]  M. Levine,et al.  Spatial regulation of zerknüllt: a dorsal-ventral patterning gene in Drosophila. , 1989, Genes & development.

[34]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[35]  R. Steward Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function , 1989, Cell.

[36]  C. Nüsslein-Volhard,et al.  A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo , 1989, Cell.

[37]  M. Levine,et al.  Role of the zerknüllt gene in dorsal-ventral pattern formation in Drosophila. , 1990, Advances in genetics.

[38]  Stephen T. Crews,et al.  The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells , 1990, Cell.

[39]  Y. Jan,et al.  Neuroectoderm in Drosophila embryos is dependent on the mesoderm for positioning but not for formation. , 1991, Genes & development.

[40]  M. Leptin twist and snail as positive and negative regulators during Drosophila mesoderm development. , 1991, Genes & development.

[41]  R. Sommer,et al.  Segmentation gene expression in the housefly Musca domestica. , 1991, Development.

[42]  P. Gerlinger,et al.  The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. , 1991, Developmental biology.

[43]  Ruth Lehmann,et al.  Nanos is the localized posterior determinant in Drosophila , 1991, Cell.

[44]  A. Fainsod,et al.  A chicken caudal homologue, CHox-cad, is expressed in the epiblast with posterior localization and in the early endodermal lineage. , 1991, Development.

[45]  B. Thisse,et al.  Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product , 1991, Cell.

[46]  M. O’Connor,et al.  The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1 , 1991, Cell.

[47]  D Kosman,et al.  Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. , 1991, Science.

[48]  M. Levine,et al.  The dorsal morphogen is a sequence-specific DNA-binding protein that interacts with a long-range repression element in drosophila , 1991, Cell.

[49]  C. Nüsslein-Volhard,et al.  The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. , 1991, Development.

[50]  G. Struhl,et al.  RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos , 1991, Cell.

[51]  C. Nüsslein-Volhard,et al.  cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos. , 1991, Development.

[52]  R. Sommer,et al.  Evolutionary conservation pattern of zinc-finger domains of Drosophila segmentation genes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. Anderson,et al.  Activation of the easter zymogen is regulated by five other genes to define dorsal-ventral polarity in the Drosophila embryo. , 1992, Development.

[54]  J. Joly,et al.  Expression of a zebrafish caudal homeobox gene correlates with the establishment of posterior cell lineages at gastrulation. , 1992, Differentiation; research in biological diversity.

[55]  K. Anderson,et al.  decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo , 1992, Cell.

[56]  M. Levine,et al.  dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. , 1992, Genes & development.

[57]  C. Nüsslein-Volhard,et al.  Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity , 1992, Cell.

[58]  K. Anderson,et al.  Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. , 1992, Development.

[59]  C. Nüsslein-Volhard,et al.  The origin of pattern and polarity in the Drosophila embryo , 1992, Cell.

[60]  M. Levine,et al.  The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. , 1992, Genes & development.

[61]  W. Gelbart,et al.  Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  C. Wright,et al.  Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern , 1993, Mechanisms of Development.

[63]  R. Steward,et al.  Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal , 1993, The Journal of cell biology.

[64]  M. L. King,et al.  A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. , 1993, Development.

[65]  W. Gelbart,et al.  An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. , 1993, Development.

[66]  K. Anderson,et al.  Genetic characterization of tube and pelle, genes required for signaling between Toll and dorsal in the specification of the dorsal-ventral pattern of the Drosophila embryo. , 1993, Genetics.

[67]  Markus Affolter,et al.  Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic , 1994, Cell.

[68]  K. Anderson,et al.  A processed form of the Spätzle protein defines dorsal-ventral polarity in the Drosophila embryo. , 1994, Development.

[69]  W. Gelbart,et al.  Characterization and relationship of dpp receptors encoded by the saxophone and thick veins genes in Drosophila , 1994, Cell.

[70]  J. Massagué,et al.  Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor , 1994, Cell.

[71]  J. Graff,et al.  Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo , 1994, Cell.

[72]  D. Tautz,et al.  Insect embryogenesis - What is ancestral and what is derived? , 1994 .

[73]  D. Duboule Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. , 1994, Development (Cambridge, England). Supplement.

[74]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[75]  K. Anderson,et al.  The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo , 1994, Cell.

[76]  R. Sommer,et al.  Expression patterns of twist and snail in Tribolium (Coleoptera) suggest a homologous formation of mesoderm in long and short germ band insects. , 1994, Developmental genetics.

[77]  M. O’Connor,et al.  Two domains of the tolloid protein contribute to its unusual genetic interaction with decapentaplegic. , 1994, Developmental biology.

[78]  Y. Suzuki,et al.  A maternal homeobox gene, Bombyx caudal, forms both mRNA and protein concentration gradients spanning anteroposterior axis during gastrulation. , 1994, Development.

[79]  N. Patel,et al.  Developmental evolution: insights from studies of insect segmentation. , 1994, Science.

[80]  Claude Desplan,et al.  Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila , 1994, Cell.

[81]  R. W. Padgett,et al.  Mutational analysis of the Drosophila tolloid gene, a human BMP-1 homolog. , 1994, Development.

[82]  Y. Sasai,et al.  Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes , 1994, Cell.

[83]  D. Curtis,et al.  nanos is an evolutionarily conserved organizer of anterior-posterior polarity. , 1995, Development.

[84]  Yoshiki Sasai,et al.  A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin , 1995, Nature.

[85]  M. Affolter,et al.  An absolute requirement for both the type II and type I receptors, punt and thick veins, for Dpp signaling in vivo , 1995, Cell.

[86]  D. Micklem mRNA localisation during development. , 1995, Developmental biology.

[87]  K. Anderson,et al.  Cactus protein degradation mediates Drosophila dorsal-ventral signaling. , 1995, Genes & development.

[88]  D. Kimelman,et al.  Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning. , 1995, Development.

[89]  R. Wharton,et al.  Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in drosophila embryos , 1995, Cell.

[90]  D. Tautz,et al.  and its role in abdominal segment formation of the Drosophila , 1995 .

[91]  R. Sommer,et al.  Conserved and divergent expression aspects of the Drosophila segmentation gene hunchback in the short germ band embryo of the flour beetle Tribolium. , 1995, Development.

[92]  K. Anderson,et al.  Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. , 1995, Annual review of genetics.

[93]  D. Tautz,et al.  Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo. , 1995, Development.

[94]  Norbert Perrimon,et al.  Activation of posterior gap gene expression in the Drosophila blastoderm , 1995, Nature.

[95]  J. Sekelsky,et al.  Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. , 1995, Genetics.

[96]  W. Gelbart,et al.  Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. , 1995, Genetics.

[97]  W. Gelbart,et al.  Drosophila Dpp signaling is mediated by the punt gene product: A dual ligand-binding type II receptor of the TGFβ receptor family , 1995, Cell.

[98]  C. Hashimoto,et al.  An unusual mosaic protein with a protease domain, encoded by the nudeI gene, is involved in defining embryonic dorsoventral polarity in Drosophila , 1995, Cell.

[99]  R. Steward,et al.  Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. , 1995, The EMBO journal.

[100]  S A Wasserman,et al.  A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. , 1996, Developmental biology.

[101]  M. Shankland,et al.  Identification and characterization of a hunchback orthologue, Lzf2, and its expression during leech embryogenesis. , 1996, Developmental biology.

[102]  H. Jäckle,et al.  From gradients to stripes in Drosophila embryogenesis: filling in the gaps. , 1996, Trends in genetics : TIG.

[103]  B. Biehs,et al.  The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. , 1996, Genes & development.

[104]  B. Lemaître,et al.  The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults , 1996, Cell.

[105]  S. Gould The Shape of Life , 1996 .

[106]  R. Harland,et al.  The Spemann Organizer Signal noggin Binds and Inactivates Bone Morphogenetic Protein 4 , 1996, Cell.

[107]  Susan J. Brown,et al.  Class 3 Hox genes in insects and the origin of zen. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[108]  S. Carroll,et al.  Polyembryonic development: insect pattern formation in a cellularized environment. , 1996, Development.

[109]  J. Graff,et al.  Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. , 1996, Development.

[110]  Dierk Niessing,et al.  RNA binding and translational suppression by bicoid , 1996, Nature.

[111]  J. Massagué,et al.  A human Mad protein acting as a BMP-regulated transcriptional activator , 1996, Nature.

[112]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[113]  Robert Geisler,et al.  A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila , 1996, Mechanisms of Development.

[114]  Susan J. Brown,et al.  The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene , 1996, Development Genes and Evolution.

[115]  C. Hunter,et al.  Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos , 1996, Cell.

[116]  J. Dubnau,et al.  RNA recognition and translational regulation by a homeodomain protein , 1996, Nature.

[117]  A. McMahon,et al.  Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. , 1996, Genes & development.

[118]  A. Israël,et al.  NF-kappaB activity in transgenic mice: developmental regulation and tissue specificity. , 1996, Development.

[119]  R. Wharton,et al.  The Nanos gradient in Drosophila embryos is generated by translational regulation. , 1996, Genes & development.

[120]  Andrew P. McMahon,et al.  The zebrafish organizer requires chordino , 1997, Nature.

[121]  M. Akam,et al.  Cellularization in locust embryos occurs before blastoderm formation. , 1997, Development.

[122]  Ken W. Y. Cho,et al.  Production of a DPP Activity Gradient in the Early Drosophila Embryo through the Opposing Actions of the SOG and TLD Proteins , 1997, Cell.

[123]  W. Gelbart,et al.  Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal transduction cascade. , 1997, Development.

[124]  D. Weisblat,et al.  A nanos homolog in leech. , 1997, Development.

[125]  L. Zon,et al.  The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. , 1997, Development.

[126]  Kirby D. Johnson,et al.  Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic , 1997, Nature.

[127]  Leslie Dale,et al.  Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity , 1997, Cell.

[128]  S. Holley,et al.  Fish are like flies are like frogs: conservation of dorsal-ventral patterning mechanisms. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[129]  U. Strähle,et al.  Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. , 1997, Science.

[130]  A. Suzuki,et al.  Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. , 1997, Development.

[131]  A. Fainsod,et al.  The chicken caudal genes establish an anterior-posterior gradient by partially overlapping temporal and spatial patterns of expression , 1997, Mechanisms of Development.

[132]  Stanley Fields,et al.  A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line , 1997, Nature.

[133]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[134]  C. Janeway,et al.  A human homologue of the Drosophila Toll protein signals activation of adaptive immunity , 1997, Nature.

[135]  E. Green,et al.  Mutations in TWIST, a basic helix–loop–helix transcription factor, in Saethre-Chotzen syndrome , 1997, Nature Genetics.

[136]  I. Verma,et al.  Role of Rel/NF-κB transcription factors during the outgrowth of the vertebrate limb , 1998, Nature.

[137]  E. L. Ferguson,et al.  Spatially Restricted Activation of the SAX Receptor by SCW Modulates DPP/TKV Signaling in Drosophila Dorsal–Ventral Patterning , 1998, Cell.

[138]  D. Tautz,et al.  A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene-like fashion , 1998, Development Genes and Evolution.

[139]  D. Brantley,et al.  Inhibition of NF-κB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis , 1998, Nature.

[140]  D. Tautz,et al.  A caudal homologue in the short germ band beetle Tribolium shows similarities to both, the Drosophila and the vertebrate caudal expression patterns , 1998, Development Genes and Evolution.

[141]  M Klingler,et al.  Regulation of the Tribolium homologues of caudal and hunchback in Drosophila: evidence for maternal gradient systems in a short germ embryo. , 1998, Development.

[142]  L. Frisse,et al.  Embryonic axis specification in nematodes: evolution of the first step in development , 1998, Current Biology.

[143]  A. Fainsod,et al.  Nested expression and sequential downregulation of the Xenopus caudal genes along the anterior-posterior axis , 1998, Mechanisms of Development.

[144]  T. Schüpbach,et al.  Localized Requirements for windbeutel and pipe Reveal a Dorsoventral Prepattern within the Follicular Epithelium of the Drosophila Ovary , 1998, Cell.

[145]  R. Delotto,et al.  Conserved Spätzle/Toll signaling in dorsoventral patterning of Xenopus embryos , 1998, Mechanisms of Development.

[146]  G. Hardiman,et al.  A family of human receptors structurally related to Drosophila Toll. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[147]  A. Bloch-Zupan,et al.  The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. , 1998, Human molecular genetics.

[148]  J. Hudson,et al.  The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4. , 1998, Development.

[149]  L. Stevens,et al.  Spatially Restricted Expression of pipe in the Drosophila Egg Chamber Defines Embryonic Dorsal–Ventral Polarity , 1998, Cell.

[150]  J. Marsh,et al.  The gastrulation defective gene of Drosophila melanogaster is a member of the serine protease superfamily. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[151]  M. Telford,et al.  Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene , 1998, Development Genes and Evolution.

[152]  J. Slack,et al.  Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3 , 1998, The EMBO journal.

[153]  D. Yeates,et al.  Congruence and controversy: toward a higher-level phylogeny of Diptera. , 1999, Annual review of entomology.

[154]  N. Alto,et al.  Extensive zygotic control of the anteroposterior axis in the wasp Nasonia vitripennis. , 1999, Development.

[155]  Michael Levine,et al.  Local inhibition and long-range enhancement of Dpp signal transduction by Sog , 1999, Nature.

[156]  R. Wharton,et al.  Recruitment of Nanos to hunchback mRNA by Pumilio. , 1999, Genes & development.

[157]  Marvin Wickens,et al.  NANOS-3 and FBF proteins physically interact to control the sperm–oocyte switch in Caenorhabditis elegans , 1999, Current Biology.

[158]  H. Jäckle,et al.  The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[159]  T. Bouwmeester,et al.  The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. , 1999, Development.

[160]  G. Seydoux,et al.  nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. , 1999, Development.

[161]  W. Wood,et al.  A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. , 1999, Developmental biology.

[162]  G. Morata,et al.  Caudal is the Hox gene that specifies the most posterior Drosophile segment , 1999, Nature.

[163]  M. Akam,et al.  Developmental evolution: Axial patterning in insects , 1999, Current Biology.

[164]  Diethard Tautz,et al.  Segmentation gene expression in the mothmidge Clogmia albipunctata (Diptera, Psychodidae) and other primitive dipterans , 1999, Development Genes and Evolution.

[165]  H. Jäckle,et al.  Toll homolog expression in the beetle Tribolium suggests a different mode of dorsoventral patterning than in Drosophila embryos , 1999, Mechanisms of Development.

[166]  H. Saiga,et al.  Ascidian tail formation requires caudal function. , 1999, Developmental biology.

[167]  William C. Smith,et al.  The origins of primitive blood in Xenopus: implications for axial patterning. , 1999, Development.

[168]  E. Wieschaus,et al.  The Drosophila Gene brinker Reveals a Novel Mechanism of Dpp Target Gene Regulation , 1999, Cell.

[169]  M. Oelgeschläger,et al.  The establishment of spemann's organizer and patterning of the vertebrate embryo , 2000, Nature Reviews Genetics.

[170]  U. Schmidt-Ott The amnioserosa is an apomorphic character of cyclorrhaphan flies , 2000, Development Genes and Evolution.

[171]  J. Iwasa,et al.  The leech hunchback protein is expressed in the epithelium and CNS but not in the segmental precursor lineages , 2000, Development Genes and Evolution.

[172]  O. Shimmi,et al.  Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. , 2000, Development.

[173]  S. Newfeld,et al.  Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. , 2000, Development.

[174]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[175]  M. Levine,et al.  Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. , 2000, Development.

[176]  E. Robertis,et al.  The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling , 2000, Nature.

[177]  M. Grbic “Alien” wasps and evolution of development , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[178]  L. Raftery,et al.  The zinc finger protein schnurri acts as a Smad partner in mediating the transcriptional response to decapentaplegic. , 2000, Developmental biology.

[179]  S. Roth,et al.  The maternal NF-kappaB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. , 2000, Development.

[180]  C. Desplan,et al.  Bicoid-independent formation of thoracic segments in Drosophila. , 2000, Science.

[181]  H. Taubert,et al.  Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[182]  J. Spring,et al.  The mesoderm specification factor twist in the life cycle of jellyfish. , 2000, Developmental biology.

[183]  D. Tautz,et al.  Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[184]  M. Affolter,et al.  Schnurri mediates Dpp-dependent repression of brinker transcription , 2000, Nature Cell Biology.

[185]  Y. Taketani,et al.  Schnurri interacts with Mad in a Dpp‐dependent manner , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[186]  A. Brivanlou,et al.  Twisted gastrulation can function as a BMP antagonist , 2001, Nature.

[187]  Stephen C. Ekker,et al.  Twisted gastrulation is a conserved extracellular BMP antagonist , 2001, Nature.

[188]  H. Spemann,et al.  Induction of Embryonic Primordia by Implantation of Organizers from a Different Species. , 2024, Cells & development.

[189]  M. Akam,et al.  Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. , 2001, Development.

[190]  Ken W. Y. Cho,et al.  Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling , 2001, Nature.

[191]  C. Hashimoto,et al.  Activation of a protease cascade involved in patterning the Drosophila embryo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[192]  W. Wood,et al.  Zygotic expression of the caudal homolog pal-1 is required for posterior patterning in Caenorhabditis elegans embryogenesis. , 2001, Developmental biology.

[193]  R. Geisler,et al.  The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. , 2001, Development.

[194]  R. Wharton,et al.  Drosophila Brain Tumor is a translational repressor. , 2001, Genes & development.

[195]  S. Lall,et al.  Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. , 2001, Development.

[196]  R. Denell,et al.  A strategy for mapping bicoid on the phylogenetic tree , 2001, Current Biology.