Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells.

Out-of-plane plasmonic nanoantennas protruding from the substrate are exploited to perform very sensitive surface enhanced Raman scattering analysis of living cells. Cells cultured on three-dimensional surfaces exhibit tight adhesion with nanoantenna tips where the plasmonic hot-spot resides. This fact provides observable cell adhesion sites combined with high plasmonic enhancement, resulting in an ideal system for Raman investigation of cell membranes.

[1]  Sanjiv S. Gambhir,et al.  Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[2]  A Diaspro,et al.  Fast and cost-effective fabrication of large-area plasmonic transparent biosensor array. , 2015, Lab on a chip.

[3]  R. Barker,et al.  Intracellular SERS Nanoprobes For Distinction Of Different Neuronal Cell Types , 2013, Nano letters.

[4]  Jacob T. Robinson,et al.  Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells , 2010, Proceedings of the National Academy of Sciences.

[5]  A Atilla Hincal,et al.  Sterile, injectable cyclodextrin nanoparticles: effects of gamma irradiation and autoclaving. , 2006, International journal of pharmaceutics.

[6]  Jemma G. Kelly,et al.  Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes. , 2011, ACS nano.

[7]  B. Geiger,et al.  Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. , 1992, Cell motility and the cytoskeleton.

[8]  Peter T C So,et al.  High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. , 2015, Nano letters.

[9]  K. Livak,et al.  Real time quantitative PCR. , 1996, Genome research.

[10]  Mario Malerba,et al.  Hollow plasmonic antennas for broadband SERS spectroscopy , 2015, Beilstein journal of nanotechnology.

[11]  M. Stevens,et al.  Assessment of cell line models of primary human cells by Raman spectral phenotyping. , 2010, Biophysical journal.

[12]  B. Geiger,et al.  Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells , 1993, The Journal of cell biology.

[13]  Lauren A Austin,et al.  Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes. , 2014, ACS nano.

[14]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[15]  Richard W. Taylor,et al.  Watching individual molecules flex within lipid membranes using SERS , 2014, Scientific Reports.

[16]  Mario Malerba,et al.  Controlling Wetting and Self‐Assembly Dynamics by Tailored Hydrophobic and Oleophobic Surfaces , 2014, Advanced materials.

[17]  Michael S. Feld,et al.  Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles , 2002 .

[18]  Francesco De Angelis,et al.  3D Nanostar Dimers with a Sub‐10‐nm Gap for Single‐/Few‐Molecule Surface‐Enhanced Raman Scattering , 2014, Advanced materials.

[19]  Y. Kraan,et al.  Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Jian Xu,et al.  Single cell Raman spectroscopy for cell sorting and imaging. , 2012, Current opinion in biotechnology.

[21]  M. Maffia,et al.  Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications , 2010, Nanotechnology.

[22]  B. Cui,et al.  Intracellular Recording of Action Potentials by Nanopillar Electroporation , 2012, Nature nanotechnology.

[23]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[24]  M. Diem,et al.  Spectroscopy , 2007, Acta Neuropsychiatrica.

[25]  E. Arriaga,et al.  Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[26]  Shulin Zhao,et al.  Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. , 2010, Analytical chemistry.

[27]  Jonathan Stricker,et al.  Mechanics of the F-actin cytoskeleton. , 2010, Journal of biomechanics.

[28]  Seung-Man Yang,et al.  Nanowire-based single-cell endoscopy. , 2012, Nature nanotechnology.

[29]  Mario Malerba,et al.  3D hollow nanostructures as building blocks for multifunctional plasmonics. , 2013, Nano letters.

[30]  Francesco De Angelis,et al.  Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules. , 2014, ACS nano.

[31]  B. Geiger,et al.  Expression of the adherens junction protein vinculin in human basal and squamous cell tumors: relationship to invasiveness and metastatic potential. , 1997, Human pathology.

[32]  L. Berdondini,et al.  3D plasmonic nanoantennas integrated with MEA biosensors. , 2015, Nanoscale.

[33]  S. Lillard,et al.  Measurement of single-cell gene expression using capillary electrophoresis. , 2001, Analytical chemistry.

[34]  S. Kawata,et al.  Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. , 2011, Nano letters.

[35]  Shuming Nie,et al.  Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS. , 2006, Faraday discussions.

[36]  Yukihiro Ozaki,et al.  Adsorption of S—S Containing Proteins on a Colloidal Silver Surface Studied by Surface-Enhanced Raman Spectroscopy , 2004, Applied spectroscopy.

[37]  E. Menéndez-Proupin,et al.  Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations. , 2011, Physical chemistry chemical physics : PCCP.

[38]  A. I. Athamneh,et al.  Peptide-Guided Surface-Enhanced Raman Scattering Probes for Localized Cell Composition Analysis , 2012, Applied and Environmental Microbiology.

[39]  Satoshi Kawata,et al.  Raman and SERS microscopy for molecular imaging of live cells , 2013, Nature Protocols.

[40]  René Streubel,et al.  Pulsed laser ablation of a continuously-fed wire in liquid flow for high-yield production of silver nanoparticles. , 2013, Physical chemistry chemical physics : PCCP.

[41]  Andrea Toma,et al.  Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures , 2011 .

[42]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[43]  J. Greve,et al.  Studying single living cells and chromosomes by confocal Raman microspectroscopy , 1990, Nature.

[44]  Satoshi Kawata,et al.  Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell. , 2009, Journal of biomedical optics.

[45]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[46]  N. Pavillon,et al.  Laser-targeted photofabrication of gold nanoparticles inside cells , 2014, Nature Communications.

[47]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Satoshi Kawata,et al.  3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. , 2014, Methods.

[49]  Shui-Tong Lee,et al.  Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. , 2013, Nano letters.

[50]  G. Compagnini,et al.  Hierarchical effect behind the supramolecular chirality of silver(I)-cysteine coordination polymers. , 2015, The journal of physical chemistry. B.

[51]  J. Hofkens,et al.  Live‐Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides , 2014, Advanced materials.

[52]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[53]  K. Dholakia,et al.  Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. , 2009, ACS nano.