Can Social Features Help Learning to Rank YouTube Videos?

We investigate the impact of social features (such as likes, dislikes, comments, etc.) on the effectiveness of video retrieval in YouTube video sharing system using state-of-the-art learning to rank approaches and a greedy feature selection algorithm. Our experiments based on a dataset of 3,500 annotated query-video pairs reveal that social features are promising to improve the retrieval performance.

[1]  W. Bruce Croft,et al.  Linear feature-based models for information retrieval , 2007, Information Retrieval.

[2]  Kilian Q. Weinberger,et al.  Web-Search Ranking with Initialized Gradient Boosted Regression Trees , 2010, Yahoo! Learning to Rank Challenge.

[3]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[4]  J. Friedman Stochastic gradient boosting , 2002 .

[5]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[6]  Jiangchuan Liu,et al.  Statistics and Social Network of YouTube Videos , 2008, 2008 16th Interntional Workshop on Quality of Service.

[7]  Nuria Oliver,et al.  Leveraging user comments for aesthetic aware image search reranking , 2012, WWW.

[8]  Ophir Frieder,et al.  Are Web User Comments Useful for Search? , 2009, LSDS-IR@SIGIR.

[9]  Peter Ingwersen,et al.  Developing a Test Collection for the Evaluation of Integrated Search , 2010, ECIR.

[10]  Mike Thelwall,et al.  Commenting on YouTube videos: From guatemalan rock to El Big Bang , 2012, J. Assoc. Inf. Sci. Technol..

[11]  Yi Chang,et al.  Yahoo! Learning to Rank Challenge Overview , 2010, Yahoo! Learning to Rank Challenge.

[12]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[13]  Wolfgang Nejdl,et al.  How useful are your comments?: analyzing and predicting youtube comments and comment ratings , 2010, WWW '10.

[14]  Pericles A. Mitkas,et al.  A correlation analysis of web social media , 2011, WIMS '11.

[15]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[16]  James Caverlee,et al.  Ranking Comments on the Social Web , 2009, 2009 International Conference on Computational Science and Engineering.

[17]  Stefan Siersdorfer,et al.  Analyzing the Polarity of Opinionated Queries , 2012, ECIR.

[18]  Yong-Yeol Ahn,et al.  Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems , 2009, IEEE/ACM Transactions on Networking.

[19]  Tao Qin,et al.  Feature selection for ranking , 2007, SIGIR.