Large deviations for sums of i.i.d. random compact sets
暂无分享,去创建一个
[1] H. Rådström. An embedding theorem for spaces of convex sets , 1952 .
[2] F. Smithies. Linear Operators , 2019, Nature.
[3] L. Hörmander. Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .
[4] J. Schwartz,et al. Linear Operators. Part I: General Theory. , 1960 .
[5] R. Starr. Quasi-Equilibria in Markets with Non-Convex Preferences , 1969 .
[6] Z. Artstein,et al. A Strong Law of Large Numbers for Random Compact Sets , 1975 .
[7] J. Cassels. Measures of the non-convexity of sets and the Shapley–Folkman–Starr theorem , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] N. Cressie. A central limit theorem for random sets , 1979 .
[9] N. N. Lyashenko,et al. Limit theorems for sums of independent, compact, random subsets of euclidean space , 1982 .
[10] Wolfgang Weil,et al. An application of the central limit theorem for banach-space-valued random variables to the theory of random sets , 1982 .
[11] Marjorie G. Hahn,et al. Limit theorems for random sets: An application of probability in banach space results , 1983 .
[12] M. Puri,et al. Limit theorems for random compact sets in Banach space , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Christian Hess,et al. Multivalued strong laws of large numbers in the slice topology. Application to integrands , 1994 .
[14] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .