Implementing a Highly Parameterized Digital PIV System on Reconfigurable Hardware

This paper presents PARPIV the design and prototyping of a highly parameterized digital Particle Image Velocimetry (PIV) system implemented on reconfigurable hardware. Despite many improvements to PIV methods over the last twenty years, PIV post-processing remains a computationally intensive task. It becomes a serious bottleneck as camera acquisition rates reach 1000 frames per second. In this research, we aim to substantially speed up PIV processing by implementing it in reconfigurable hardware. Furthermore, this implementation is highly parameterized, supporting adaptation to a variety of setups and application domains. The circuit is parameterized by the dimensions of the captured images as well as the dimensions of the interrogation windows and sub-areas, pixel representation, board memory width, displacement and overlap. Through this work a parameterized library of different VHDL components was built. To the best of the authors’ knowledge, this is the first highly parameterized PIV system implemented on reconfigurable hardware reported in the literature. For a typical PIV configuration with images of 512×512 pixels, 40×40 pixel interrogation windows and 32×32 pixel sub-areas, we achieved about 65\ times speedup in hardware over a standard software implementation.

[1]  Tsutomu Maruyama,et al.  An Approach to Real-Time Visualization of PIV Method with FPGA , 2001, FPL.

[2]  Miriam Leeser,et al.  Real-Time Particle Image Velocimetry for Feedback Loops Using FPGA Implementation , 2005, J. Aerosp. Comput. Inf. Commun..

[3]  Brent E. Nelson,et al.  A Hardware Genetic Algorithm for the Travelling Salesman Problem on SPLASH 2 , 1995, FPL.

[4]  S. Honda,et al.  Real time particle image velocimetry using liquid crystal display , 1994, Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9).

[5]  Xipeng Shen,et al.  A cross-input adaptive framework for GPU program optimizations , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[6]  J. R. Kadambi,et al.  Comparison of Particle Image Velocimetry and Laser Doppler Anemometry Measurements in Turbulent Fluid Flow , 2004, Annals of Biomedical Engineering.

[7]  Miriam Leeser,et al.  K-means Clustering for Multispectral Images Using Floating-Point Divide , 2007 .

[8]  David R. O'Hallaron,et al.  Computer Systems: A Programmer's Perspective , 1991 .

[9]  Jean Vuillemin,et al.  Introduction to programmable active memories , 1990 .

[10]  Marisa Lopez-Vallejo,et al.  xHDL: Extending VHDL to Improve Core Parameterization and Reuse , 2005 .

[11]  L. Lourenço Particle Image Velocimetry , 1989 .

[12]  Mark Shand,et al.  Programmable active memories: reconfigurable systems come of age , 1996, IEEE Trans. Very Large Scale Integr. Syst..

[13]  J. Carr,et al.  Digital particle image velocimetry system for real-time wind tunnel measurements , 1997, ICIASF'97 Record. International Congress on Instrumentation in Aerospace Simulation Facilities.

[14]  Daniel P. Lopresti Rapid implementation of a genetic sequence comparator using field-programmable logic arrays , 1991 .

[15]  S. A. Cuccaro,et al.  The CM-2X: a hybrid CM-2/Xilinx prototype , 1993, [1993] Proceedings IEEE Workshop on FPGAs for Custom Computing Machines.

[16]  Wang Chen,et al.  An FPGA implementation of the two-dimensional finite-difference time-domain (FDTD) algorithm , 2004, FPGA '04.

[17]  Nigel M. Allinson,et al.  FPGA acceleration of electronic design automation tasks , 1994 .

[18]  D. Hart Super-resolution PIV by recursive local-correlation , 2000 .

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  Herman Schmit,et al.  Hidden Markov modeling and fuzzy controllers in FPGAs , 1995, Proceedings IEEE Symposium on FPGAs for Custom Computing Machines.

[21]  Nathalie Bochard,et al.  An adaptive and predictive architecture for parameterised PIV algorithms , 2006, 2006 IEEE International Conference on Field Programmable Technology.

[22]  Shelly L. Miller,et al.  Particle Image Velocimetry of Human Cough , 2011 .

[23]  Michael J. Flynn,et al.  Division Algorithms and Implementations , 1997, IEEE Trans. Computers.

[24]  Daniel P. Lopresti,et al.  SPLASH: A Reconfigurable Linear Logic Array , 1990, ICPP.

[25]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[26]  Miriam Leeser,et al.  Smart camera based on reconfigurable hardware enables diverse real-time applications , 2004, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[27]  Gerard O'Regan Texas Instruments , 1964, Nature.

[28]  I Grant,et al.  The use of neural techniques in PIV and PTV , 1997 .

[29]  Scott Hauck,et al.  The roles of FPGAs in reprogrammable systems , 1998, Proc. IEEE.

[30]  Ashok Samal,et al.  HGA: A Hardware-Based Genetic Algorithm , 1995, Third International ACM Symposium on Field-Programmable Gate Arrays.

[31]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[32]  S. Leigh,et al.  Probability and Random Processes for Electrical Engineering , 1989 .

[33]  María José Moure,et al.  Features, Design Tools, and Application Domains of FPGAs , 2007, IEEE Transactions on Industrial Electronics.

[34]  Zainalabedin Navabi,et al.  VHDL: Analysis and Modeling of Digital Systems , 1992 .

[35]  M. Sholl,et al.  A fast Lagrangian PIV method for study of general high-gradient flows , 1997 .

[36]  Martyn F. Guest,et al.  An overview of FPGAs and FPGA programming; initial experiences at Daresbury , 2006 .

[37]  R. Adrian Twenty years of particle image velocimetry , 2005 .

[38]  Kenji Fujimoto,et al.  A Real-Time Visualization System for PIV , 2003, FPL.

[39]  Brent E. Nelson,et al.  Tradeoffs of designing floating-point division and square root on Virtex FPGAs , 2003, 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2003. FCCM 2003..

[40]  Naga K. Govindaraju,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .

[41]  M. Tull,et al.  Redundant binary based fixed-point divider , 2005, Canadian Conference on Electrical and Computer Engineering, 2005..

[42]  Scott Hauck,et al.  Reconfigurable computing: a survey of systems and software , 2002, CSUR.

[43]  Charles R. Kime,et al.  Logic and Computer Design Fundamentals , 1997 .

[44]  Reinhard Männer,et al.  Enable++: a second generation FPGA processor , 1995, Proceedings IEEE Symposium on FPGAs for Custom Computing Machines.

[45]  Eric L. Miller,et al.  Parallel-Beam Backprojection: An FPGA Implementation Optimized for Medical Imaging , 2005, J. VLSI Signal Process..