A random walk analogue of Lévy’s Theorem
暂无分享,去创建一个
[1] 池田 信行,et al. Stochastic differential equations and diffusion processes , 1981 .
[2] Pál Révész,et al. Random walk in random and non-random environments , 1990 .
[3] P. Révész,et al. On strong invariance for local time of partial sums , 1985 .
[4] H. Tanemura,et al. Pitman type theorem for one-dimensional diffusion processes , 1990 .
[5] G. Simons. A discrete analogue and elementary derivation of 'Lévy's equivalence' for Brownian motion , 1983 .
[6] Hiroshi Tanaka. Time Reversal of Random Walks in One-Dimension , 1989 .
[7] T. Szabados. An elementary introduction to the Wiener process and stochastic integrals , 2010, 1008.1510.
[8] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[9] Takahiko Fujita,et al. A proof of Ito's formula using a discrete Ito's formula , 2008 .
[10] P. Levy. Processus stochastiques et mouvement brownien , 1948 .
[11] L. Dubins,et al. The modified, discrete Lévy transformation is Bernoulli , 1992 .
[12] On the Lévy transformation of brownian motions and continuous martingales , 1993 .