Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI

Mixed matrix membranes (MMMs) composed of metal organic framework (MOF) fillers embedded in a polymeric matrix represent a promising alternative for CO2 removal from natural gas and biogas. Here, MMMs based on NH2‐MIL‐53(Al) MOF and polyimide are successfully synthesized with MOF loadings up to 25 wt% and different thicknesses. At 308 K and ΔP = 3 bar, the incorporation of the MOF filler enhances CO2 permeability with respect to membranes based on the neat polymer, while preserving the relatively high separation factor. The rate of solvent evaporation after membrane casting proves key for the final configuration and dispersion of the MOF in the membrane. Fast solvent removal favours the contraction of the MOF structure to its narrow pore framework configuration, resulting in enhanced separation factor and, particularly, CO2 permeability. The study reveals an excellent filler‐polymer contact, with ca. 0.11% void volume fraction, for membranes based on the amino‐functionalized MOF, even at high filler loadings (25 wt%). By providing precise and quantitative insight into key structural features at the nanoscale range, the approach provides feedback to the membrane casting process and therefore it represents an important advancement towards the rational design of mixed matrix membranes with enhanced structural features and separation performance.

[1]  F. Kapteijn,et al.  Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential , 2013 .

[2]  K. Kunze,et al.  Visualization of hierarchically structured zeolite bodies from macro to nano length scales. , 2012, Nature chemistry.

[3]  R. Krishna,et al.  Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. , 2012, Angewandte Chemie.

[4]  M. Guiver,et al.  Advances in high permeability polymeric membrane materials for CO2 separations , 2012 .

[5]  Denis Rodrigue,et al.  Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation , 2012 .

[6]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[7]  B. C. Ng,et al.  Recent advances of inorganic fillers in mixed matrix membrane for gas separation , 2011 .

[8]  Omid Ghaffari Nik,et al.  Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO 2/CH 4 separation , 2011 .

[9]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[10]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[11]  Ivo F. J. Vankelecom,et al.  Membrane-based technologies for biogas separations. , 2010, Chemical Society reviews.

[12]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[13]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[14]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[15]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[16]  Roda Bounaceur,et al.  Biogas, membranes and carbon dioxide capture , 2009 .

[17]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[18]  L. Robeson,et al.  The upper bound revisited , 2008 .

[19]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[21]  Matthias Wessling,et al.  Materials dependence of mixed gas plasticization behavior in asymmetric membranes , 2007 .

[22]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[23]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[24]  Sangil Kim,et al.  Preparation and characterization of a poly(imide siloxane) and zeolite L mixed matrix membrane , 2006 .

[25]  Tai‐Shung Chung,et al.  Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes , 2006 .

[26]  M. Ulbricht Advanced functional polymer membranes , 2006 .

[27]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[28]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[29]  N. A. Ochoa,et al.  ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation , 2004 .

[30]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[31]  Stephen J. Miller,et al.  Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves , 2003 .

[32]  William J. Koros,et al.  Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results , 2003 .

[33]  R. Mahajan,et al.  Pushing the limits on possibilities for large scale gas separation: which strategies? , 2000 .

[34]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[35]  Matthias Wessling,et al.  CO2-induced plasticization phenomena in glassy polymers , 1999 .

[36]  A. A. Friedman,et al.  Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant , 1998 .

[37]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[38]  I. Vankelecom,et al.  INCORPORATION OF ZEOLITES IN POLYIMIDE MEMBRANES , 1995 .

[39]  William J. Koros,et al.  Membrane-based gas separation , 1993 .

[40]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[41]  Robert L. Miller,et al.  Polymer Chain Stiffness Parameter, σ, and Cross-Sectional Area per Chain , 1977 .