Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects

In the last decade, there has been an exponential increase of scientific interest in smart additive manufacturing (AM) technology. Among the different AM techniques, one of the most commonly applied processes is digital light processing (DLP). DLP uses a digital projector screen to flash an ultraviolet light which cures photopolymer resins. The resin is cured to form a solid to produce parts with precise high dimensional accuracy. During the curing process, there are several process parameters that need to be optimized. Among these, the exposure time affects the quality of the 3D printed specimen such as mechanical strength and dimensional accuracy. This study examines optimal exposure times and their impact on printed part. It was found that there is optimal exposure time for printed part to have appropriate mechanical strength and accurate dimensions. The gel fraction and TGA test results confirmed that the improvement of mechanical properties with the increasing UV exposure time was due to the increase of crosslinked network formation with UV exposure time in acrylic resins. In addition, gel fraction and thermogravimetric analysis were employed to microscopically investigate how this process parameter impacts mechanical performance.