Instance Coreference Resolution in Multi-ontology Linked Data Resources

Web of linked data is one of the main principles for realization of semantic web ideals. In recent years, different data providers have produced many data sources in the Linking Open Data (LOD) cloud upon different schemas. Isolated published linked data sources are not themselves so beneficial for intelligent applications and agents in the context of semantic web. It is not possible to take advantage of the linked data potential capacity without integrating various data sources. The challenge of integration is not limited to instances; rather, schema heterogeneity affects discovering instances with the same identity. In this paper we propose a novel approach, SBUEI, for instance co-reference resolution between various linked data sources even with heterogeneous schemas. For this purpose, SBUEI considers the entity co-reference resolution problem in both schema and instance levels. The process of matching is applied in both levels consecutively to let the system discover identical instances. SBUEI also applies a new approach for consolidation of linked data in instance level. After finding identical instances, SBUEI searches locally around them in order to find more instances that are equal. Experiments show that SBUEI obtains promising results with high precision and recall.

[1]  Enrico Motta,et al.  Towards Data Fusion in a Multi-ontology Environment , 2009, LDOW.

[2]  Ian Horrocks,et al.  The Semantic Web – ISWC 2010: 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I , 2010, SEMWEB.

[3]  Jan Nößner,et al.  CODI: Combinatorial Optimization for Data Integration: results for OAEI 2011 , 2010, OM.

[4]  Mansur R. Kabuka,et al.  Ontology matching with semantic verification , 2009, J. Web Semant..

[5]  Mark A. Musen,et al.  Anchor-PROMPT: Using Non-Local Context for Semantic Matching , 2001, OIS@IJCAI.

[6]  Heiner Stuckenschmidt,et al.  Leveraging Terminological Structure for Object Reconciliation , 2010, ESWC.

[7]  Jeff Heflin,et al.  Automatically Generating Data Linkages Using a Domain-Independent Candidate Selection Approach , 2011, SEMWEB.

[8]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[9]  Craig A. Knoblock,et al.  Linking and Building Ontologies of Linked Data , 2010, SEMWEB.

[10]  Yuzhong Qu,et al.  A self-training approach for resolving object coreference on the semantic web , 2011, WWW.

[11]  Robert Isele,et al.  LDIF - Linked Data Integration Framework , 2011, COLD.

[12]  Mariano P. Consens,et al.  Linked Movie Data Base , 2009, LDOW.

[13]  Nathalie Pernelle,et al.  LN2R a knowledge based reference reconciliation system: OAEI 2010 results , 2010, OM.

[14]  Jan Hidders,et al.  SERIMI - resource description similarity, RDF instance matching and interlinking , 2011, OM.

[15]  Matthew Rowe,et al.  Interlinking Distributed Social Graphs , 2009, LDOW.

[16]  Cosmin Stroe,et al.  Using AgreementMaker to align ontologies for OAEI 2010 , 2010, OM.

[17]  Mansur R. Kabuka,et al.  ASMOV: results for OAEI 2010 , 2010, OM.

[18]  Amit P. Sheth,et al.  Ontology Alignment for Linked Open Data , 2010, SEMWEB.

[19]  Mansur R. Kabuka,et al.  ASMOV Results for OAEI 2007 , 2007, OM.

[20]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[21]  Ted Briscoe,et al.  32nd Annual Meeting of the Association for Computational Linguistics, 27-30 June 1994, New Mexico State University, Las Cruces, New Mexico, USA, Proceedings , 1994, ACL.

[22]  Lora Aroyo,et al.  The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I , 2011, SEMWEB.

[23]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[24]  Masaki Aono,et al.  An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size , 2009, J. Web Semant..

[25]  Alfio Ferrara,et al.  Automatic Identity Recognition in The Semantic Web , 2008, IRSW.

[26]  Stefano Spaccapietra Journal on Data Semantics XV , 2011, Journal on Data Semantics XV.

[27]  Enrico Motta,et al.  Overcoming Schema Heterogeneity between Linked Semantic Repositories to Improve Coreference Resolution , 2009, ASWC.

[28]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[29]  Axel Polleres,et al.  Some entities are more equal than others: statistical methods to consolidate Linked Data , 2010 .

[30]  Silvana Castano,et al.  Instance Matching for Ontology Population , 2008, SEBD.

[31]  Masaki Aono,et al.  Ontology instance matching by considering semantic link cloud , 2010 .

[32]  Andreas Harth,et al.  Performing Object Consolidation on the Semantic Web Data Graph , 2007, I3.

[33]  Haofen Wang,et al.  Zhishi.links results for OAEI 2011 , 2011, OM.

[34]  Silvana Castano,et al.  On the Ontology Instance Matching Problem , 2008, 2008 19th International Workshop on Database and Expert Systems Applications.

[35]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[36]  Robert Isele,et al.  Silk Server - Adding missing Links while consuming Linked Data , 2010, COLD.

[37]  Mark B. Sandler,et al.  Automatic Interlinking of Music Datasets on the Semantic Web , 2008, LDOW.

[38]  Heiner Stuckenschmidt,et al.  Ontology Alignment Evaluation Initiative: Six Years of Experience , 2011, J. Data Semant..