Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission

Joanne C. White | Jonathan P. Dash | P. Aplin | W. Cohen | S. Hubbell | S. Goetz | Jean‐François Bastin | R. Dubayah | O. Phillips | R. Valbuena | E. Næsset | R. Lucas | C. Hopkinson | G. Parker | A. Skidmore | J. Pisek | J. Bogaert | D. Burslem | P. Corona | M. Hofton | M. Dalponte | R. Main | R. Mathieu | H. Andersen | N. Barbier | J. Chave | D. Coomes | S. Lewis | M. Longo | R. Nilus | J. Poulsen | L. White | T. Baker | T. Gobakken | M. Heurich | A. Huth | D. Clark | A. Hudak | L. Naidoo | R. Hill | L. Boschetti | M. Cutler | J. White | K. Papathanassiou | S. Saarela | R. Chazdon | M. Simard | P. Montesano | Huabing Huang | F. Morsdorf | K. Wessels | H. Verbeeck | R. V. Martinez | J. Armston | A. Monerris | D. Boyd | J. Manzanera | A. García-Abril | P. Boeckx | S. Healey | M. Tanase | N. Kljun | P. Patterson | S. Hancock | N. Labrière | L. Duncanson | B. Erasmus | J. Hacker | A. Sánchez-Azofeifa | K. Jeffery | E. Kearsley | J. Kellner | D. Orwig | K. Stereńczak | H. Pretzsch | Martin Krucek | T. Vrška | Kamil Král | S. Deng | A. Ferraz | Eliakimu Zahabu | C. Torresan | P. Fekety | S. Luthcke | R. Scholes | S. de-Miguel | D. Kenfack | A. Mendoza | Rico Fischer | C. Philipson | C. Rüdiger | Hao Tang | Carlos E Silva | M. Katoh | P. Biber | Sassan Saatchi | K. Abernethy | J. Dalling | V. Meyer | D. Minor | H. Memiaghe | K. Cushman | Nikolai Knapp | L. Fatoyinbo | S. Marselis | P. Boucher | David B. Clark | B. Blair | Jamis M. Bruening | B. Imbach | Carlo Zgraggen | S. Calvo-Rodriguez | C. A. Silva | Alfonso Alonso | Peter Ellis | E. Zahabu | Alfredo Fernández-Landa | Nuria Sánchez‐López | Adrian Fisher | Michael O’Brien | Martin Krůček | R. V. Martínez

[1]  J. Armston,et al.  Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density , 2023 .

[2]  K. Hibbard,et al.  The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions , 2021 .

[3]  R. Dubayah,et al.  Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping , 2021, Remote Sensing of Environment.

[4]  R. Dubayah,et al.  High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA , 2020 .

[5]  Benjamin Wilkinson,et al.  Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes , 2020, Comput. Electron. Agric..

[6]  M. Hansen,et al.  Mapping global forest canopy height through integration of GEDI and Landsat data , 2020 .

[7]  M. Disney,et al.  New 3D measurements of large redwood trees for biomass and structure , 2020, Scientific Reports.

[8]  N. Picard,et al.  Spatial validation reveals poor predictive performance of large-scale ecological mapping models , 2020, Nature Communications.

[9]  Sean P. Healey,et al.  Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation , 2020, Remote. Sens..

[10]  F. Tubiello,et al.  Carbon Emissions and Removals by Forests: New Estimates 1990–2020 , 2020 .

[11]  Marc Simard,et al.  Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California , 2020, Remote Sensing of Environment.

[12]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography , 2020, Science of Remote Sensing.

[13]  Anthony G. Vorster,et al.  Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations , 2020, Carbon Balance and Management.

[14]  Scott J. Goetz,et al.  Characterizing global forest canopy cover distribution using spaceborne lidar , 2019, Remote Sensing of Environment.

[15]  Göran Ståhl,et al.  Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation , 2019, Environmental Research Letters.

[16]  Sassan Saatchi,et al.  Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them , 2019, Surveys in Geophysics.

[17]  Matti Maltamo,et al.  Estimation of forest biomass components using airborne LiDAR and multispectral sensors , 2019, iForest - Biogeosciences and Forestry.

[18]  Jan Dirk Wegner,et al.  Country-wide high-resolution vegetation height mapping with Sentinel-2 , 2019, Remote Sensing of Environment.

[19]  Sassan Saatchi,et al.  Forest degradation and biomass loss along the Chocó region of Colombia , 2019, Carbon Balance and Management.

[20]  Xiaoli Sun,et al.  The GEDI Simulator: A Large‐Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions , 2019, Earth and space science.

[21]  Alexandre Bouvet,et al.  Forest biomass retrieval approaches from earth observation in different biomes , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[22]  Marc Simard,et al.  Mangrove canopy height globally related to precipitation, temperature and cyclone frequency , 2018, Nature Geoscience.

[23]  Göran Ståhl,et al.  Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data , 2018, Remote. Sens..

[24]  Arief Wijaya,et al.  Carbon storage potential in degraded forests of Kalimantan, Indonesia , 2018, Environmental Research Letters.

[25]  Klaus Scipal,et al.  In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[26]  M. Keller,et al.  Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes , 2018, Biogeosciences.

[27]  D. R. Almeida,et al.  Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation , 2017 .

[28]  Jean‐François Bastin,et al.  Spatial Distribution of Carbon Stored in Forests of the Democratic Republic of Congo , 2017, Scientific Reports.

[29]  R. Houghton,et al.  Tropical forests are a net carbon source based on aboveground measurements of gain and loss , 2017, Science.

[30]  Michele Dalponte,et al.  Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data , 2017 .

[31]  S. Wood Generalized Additive Models: An Introduction with R, Second Edition , 2017 .

[32]  Liviu Theodor Ene,et al.  Comparing Empirical and Semi-Empirical Approaches to Forest Biomass Modelling in Different Biomes Using Airborne Laser Scanner Data , 2017 .

[33]  F. Rovero,et al.  Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity , 2017 .

[34]  Liviu Theodor Ene,et al.  Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data , 2016 .

[35]  Sassan Saatchi,et al.  Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory , 2016, Remote. Sens..

[36]  Carlos Alberto Silva,et al.  Mapping Forest Structure and Composition from Low-Density LiDAR for Informed Forest, Fuel, and Fire Management at Eglin Air Force Base, Florida, USA , 2016 .

[37]  Mark C. Vanderwel,et al.  Allometric equations for integrating remote sensing imagery into forest monitoring programmes , 2016, Global change biology.

[38]  Arief Wijaya,et al.  An integrated pan‐tropical biomass map using multiple reference datasets , 2016, Global change biology.

[39]  S. Goetz,et al.  Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+ , 2015 .

[40]  hya sree.M,et al.  Lidar Remote Sensing , 2015 .

[41]  Terje Gobakken,et al.  The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data , 2015 .

[42]  Waldo Kleynhans,et al.  Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) synthetic aperture radar data , 2015 .

[43]  F. M. Danson,et al.  Waveform lidar over vegetation: An evaluation of inversion methods for estimating return energy , 2015 .

[44]  Terje Gobakken,et al.  Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania , 2015, Carbon Balance and Management.

[45]  Guoqing Sun,et al.  Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1 , 2015 .

[46]  Terje Gobakken,et al.  Modeling Aboveground Biomass in Dense Tropical Submontane Rainforest Using Airborne Laser Scanner Data , 2015, Remote. Sens..

[47]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[48]  O. Phillips,et al.  Tropical forest wood production: a cross‐continental comparison , 2014 .

[49]  R. Valentini,et al.  Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data , 2014 .

[50]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[51]  J. Bogaert,et al.  Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin , 2013, Nature Communications.

[52]  Guoqing Sun,et al.  Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales , 2013 .

[53]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[54]  Göran Ståhl,et al.  Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data” , 2013 .

[55]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[56]  D. Clark,et al.  Tropical forest biomass estimation and the fallacy of misplaced concreteness , 2012 .

[57]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[58]  Bryan Blair,et al.  Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica , 2012 .

[59]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[60]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[61]  Natascha Kljun,et al.  Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data , 2012 .

[62]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[63]  Philip Lewis,et al.  A threshold insensitive method for locating the forest canopy top with waveform lidar , 2011 .

[64]  H. Andersen,et al.  Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska , 2011 .

[65]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[66]  Niklaus E. Zimmermann,et al.  Plant functional type mapping for earth system models , 2011 .

[67]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[68]  J. Bryan Blair,et al.  Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion , 2011 .

[69]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[70]  H. Schroeder,et al.  Governing and implementing REDD , 2011 .

[71]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[72]  Peter R. J. North,et al.  A Monte Carlo radiative transfer model of satellite waveform LiDAR , 2010 .

[73]  Michael A. Wulder,et al.  Estimating forest canopy height and terrain relief from GLAS waveform metrics , 2010 .

[74]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[75]  Lilian Blanc,et al.  Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest , 2010 .

[76]  Alan H. Strahler,et al.  Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing , 2009 .

[77]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[78]  James H Brown,et al.  Extensions and evaluations of a general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[79]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[80]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[81]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[82]  Peter Bunting,et al.  Retrieving forest biomass through integration of CASI and LiDAR data , 2008 .

[83]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[84]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[85]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[86]  N. Coops,et al.  Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR , 2007, Trees.

[87]  S. Reutebuch,et al.  A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods , 2006 .

[88]  R. Primack,et al.  Tropical rainforests and the need for cross-continental comparisons. , 2006, Trends in ecology & evolution.

[89]  Guoqing Sun,et al.  Inversion of a lidar waveform model for forest biophysical parameter estimation , 2006, IEEE Geoscience and Remote Sensing Letters.

[90]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[91]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[92]  R. Dubayah,et al.  Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships , 2003 .

[93]  W. B. Smith,et al.  Forest inventory and analysis: a national inventory and monitoring program. , 2002, Environmental pollution.

[94]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[95]  S. Pacala,et al.  Projecting the future of the U.S. carbon sink , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Guoqing Sun,et al.  Modeling lidar returns from forest canopies , 2000, IEEE Trans. Geosci. Remote. Sens..

[97]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[98]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[99]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .

[100]  S. Díaz,et al.  Plant functional types and ecosystem function in relation to global change , 1997 .

[101]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[102]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[103]  P. Snowdon,et al.  A ratio estimator for bias correction in logarithmic regressions , 1991 .

[104]  M. Herold,et al.  Aboveground Woody Biomass Product Validation Good Practices Protocol , 2021 .

[105]  Peter R. J. North,et al.  Slope Estimation from ICESat/GLAS , 2014, Remote. Sens..

[106]  G. Asner,et al.  Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric , 2014 .

[107]  S. Goetz,et al.  A first map of tropical Africa’s above-ground biomass derived from satellite imagery , 2008 .

[108]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[109]  H. W. Whitmore The Global Ecosystem , 2007 .

[110]  P. C. van Welzen,et al.  Plant Diversity and Complexity Patterns Local, Regional and Global Dimensions , 2005 .

[111]  E. Næsset ESTIMATION OF ABOVE-AND BELOW-GROUND BIOMASS IN BOREAL FOREST ECOSYSTEMS , 2004 .

[112]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[113]  John C. Gille,et al.  Algorithm Theoretical Basis Document , 1999 .