Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey

We examine the relationship between environment and the luminosities, surface brightnesses, colors, and profile shapes of luminous galaxies in the Sloan Digital Sky Survey (SDSS). For the SDSS sample, galaxy color is the galaxy property most predictive of the local environment. Galaxy color and luminosity—measures of the star formation history—jointly comprise the most predictive pair of properties. At fixed luminosity and color, density is not closely related to surface brightness or to Sérsic index—measures of galaxy structure. In the text, we discuss what measurable residual relationships exist, generally finding that at red colors and fixed luminosity, the mean density decreases at the highest surface brightnesses and Sérsic indices. In general, these results suggest that the structural properties of galaxies are less closely related to galaxy environment than are their masses and star formation histories.

[1]  Robert Lupton,et al.  Statistics in Theory and Practice , 2020 .

[2]  Neta A. Bahcall,et al.  The Dependence on Environment of the Color-Magnitude Relation of Galaxies , 2003, astro-ph/0307336.

[3]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[4]  A. Szalay,et al.  Angular Clustering with Photometric Redshifts in the Sloan Digital Sky Survey: Bimodality in the Clustering Properties of Galaxies , 2003, astro-ph/0305603.

[5]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[6]  S. Okamura,et al.  A Photometric and Spectroscopic Study of Dwarf and Giant Galaxies in the Coma Cluster. IV. The Luminosity Function , 2003, astro-ph/0301047.

[7]  D. York,et al.  The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.

[8]  D. Eisenstein Deprojecting Densities from Angular Cross-Correlations , 2002, astro-ph/0212084.

[9]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[10]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[11]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[12]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[13]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[14]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[15]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[16]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[17]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[18]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[19]  C. Marinoni,et al.  The Redshift-Space Two-Point Correlation Functions of Galaxies and Groups in the Nearby Optical Galaxy Sample , 2001, astro-ph/0102470.

[20]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[21]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[22]  Y. Hashimoto,et al.  The Concentration-Density Relation of Galaxies in the Las Campanas Redshift Survey , 1998, astro-ph/9807275.

[23]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[24]  L. Guzzo,et al.  Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types , 1997, astro-ph/9706150.

[25]  O. Lahav,et al.  The two-point correlation function and morphological segregation in the Optical Redshift Survey , 1996, astro-ph/9608001.

[26]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[27]  W. Harris,et al.  Evidence for Steep Luminosity Functions in Clusters of Galaxies , 1995, astro-ph/9503109.

[28]  H. Ferguson,et al.  The spatial distributions and intrinsic shapes of dwarf elliptical galaxies in the Virgo and Fornax Clusters , 1989 .

[29]  J. Schombert The structure of brightest cluster members. I: Surface photometry , 1986 .

[30]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[31]  V. Petrosian,et al.  Surface brightness and evolution of galaxies , 1976 .

[32]  Jr. Oemler Augustus The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters , 1974 .

[33]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[34]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[35]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .

[36]  E. Hubble The Realm of the Nebulæ , 1956, Nature.

[37]  J. J.,et al.  The Realm of the Nebulae , 1936, Nature.