Negative group delay and pulse compression in superluminal pulse propagation

We systematically study the pulse advance and pulse compression in light propagation through a transparent, anomalously dispersive medium. Using an Argand diagram, we show that pulse compression is the only form of pulse distortion, while other forms of pulse distortion can be eliminated. Experimentally, we implement a dual-band electronic amplifier to measure the negative pulse group delay and compression and confirm that they are related via a quadratic form.

[1]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[2]  Does matter wave amplification work for fermions? , 2000, Physical review letters.

[3]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[4]  Aephraim M. Steinberg,et al.  Dispersionless, highly superluminal propagation in a medium with a gain doublet. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  Garrison,et al.  Two theorems for the group velocity in dispersive media. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  Garrison,et al.  Optical pulse propagation at negative group velocities due to a nearby gain line. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[7]  K. Oughstun,et al.  Failure of the group-velocity description for ultrawideband pulse propagation in a causally dispersive, absorptive dielectric , 1999 .

[8]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[9]  Morgan W. Mitchell,et al.  Causality and negative group delays in a simple bandpass amplifier , 1998 .

[10]  S. Nagel,et al.  Argand diagrams of dielectric response , 1975 .

[11]  Energy transport in dispersive media and superluminal group velocities , 1997 .

[12]  A. Katz,et al.  Pulse Propagation in an Absorbing Medium , 1982 .

[13]  K. Oughstun,et al.  FAILURE OF THE QUASIMONOCHROMATIC APPROXIMATION FOR ULTRASHORT PULSE PROPAGATION IN A DISPERSIVE, ATTENUATIVE MEDIUM , 1997 .

[14]  S. Wong,et al.  Chu and Wong Respond , 1982 .

[15]  P. Hartman Ordinary Differential Equations , 1965 .

[16]  Steven Chu,et al.  Linear Pulse Propagation in an Absorbing Medium , 1982 .

[17]  L. J. Wang,et al.  Gain-assisted superluminal light propagation , 2000, Nature.

[18]  C. Garrett,et al.  Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium , 1970 .

[19]  L. J. Wang,et al.  Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity , 2001 .

[20]  Morgan W. Mitchell,et al.  NEGATIVE GROUP DELAY AND FRONTS IN A CAUSAL SYSTEM : AN EXPERIMENT WITH VERY LOW FREQUENCY BANDPASS AMPLIFIERS , 1997 .

[21]  K. Oughstun Pulse propagation in a linear, causally dispersive medium , 1990, Proc. IEEE.

[22]  R. Chiao,et al.  Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[23]  B. Segard,et al.  Observation of negative velocity pulse propagation , 1985 .