Differential Evolution Based on Learnable Evolution Model for Function Optimization

With the advance of technology, the generation of massive amounts of information grows every day, generating complex problems difficult to manage in an efficient way. Therefore, researchers have studied and modeled the way in which natural biological systems react and behave in certain situations, allowing to developed algorithms that exhibit a capacity to learn and/or adapt to new situations, obtaining better results than traditional approaches. In this article we present a new variant of the Differential Evolution (DE) algorithm inspired by the concept of the Learnable Evolution Model (LEM) to enhance the search capability through a selection mechanism based on machine learning to create a set of rules that allows the inferring of new candidates in the population that emerge not only the random scan. The proposed algorithm is tested and validated on a set of 23 bechmark test functions and its performance is compared with other metaheuristics. Results indicate that the proposed DE+LEM is competitive with other metaheuristic.

[1]  C. A. Coello,et al.  Una introducción a la Computación Evolutiva y alguna de sus aplicaciones en Economía y Finanzas // An Introduction to Evolutionary Computation and some of its Applications in Economics and Finance , 2006 .

[2]  Sha Wang,et al.  DE-RCO: Rotating Crossover Operator With Multiangle Searching Strategy for Adaptive Differential Evolution , 2018, IEEE Access.

[3]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[4]  Meie Shen,et al.  Differential Evolution With Two-Level Parameter Adaptation , 2014, IEEE Transactions on Cybernetics.

[5]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[6]  Carlos Alberto Cobos Lozada,et al.  GHS + LEM: Global-best Harmony Search using learnable evolution models , 2011, Appl. Math. Comput..

[7]  David W. Corne,et al.  Evolutionary Optimization Guided by Entropy-Based Discretization , 2009, EvoWorkshops.

[8]  Godfrey A. Walters,et al.  LEMMO: Hybridising Rule Induction and NSGAII for Multi-Objective Water Systems Design , 2005 .

[9]  Ryszard S. Michalski,et al.  Learnable Evolution: Combining Symbolic and Evolutionary Learning , 1998 .

[10]  Ryszard S. Michalski,et al.  The LEM3 System for Non-Darwinian Evolutionary Computation and Its Application to Complex Function Optimization , 2005 .

[11]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[12]  Jason Brownlee,et al.  Clever Algorithms: Nature-Inspired Programming Recipes , 2012 .

[13]  Kenneth A. Kaufman,et al.  Ryszard S. Michalski: The Vision and Evolution of Machine Learning , 2010, Advances in Machine Learning I.

[14]  David W. Corne,et al.  The simplest evolution/learning hybrid: LEM with KNN , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[15]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[16]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[17]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[18]  Dimitris K. Tasoulis,et al.  Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators , 2011, IEEE Transactions on Evolutionary Computation.

[19]  Janusz Wojtusiak,et al.  The LEM3 System for Multitype Evolutionary Optimization , 2009, Comput. Informatics.

[20]  Saeed Farzi The design of self-organizing evolved polynomial neural networks based on learnable evolution model 3 , 2012, Int. Arab J. Inf. Technol..

[21]  Liang Gao,et al.  Adaptive Differential Evolution With Sorting Crossover Rate for Continuous Optimization Problems , 2017, IEEE Transactions on Cybernetics.

[22]  Laetitia Vermeulen-Jourdan,et al.  Preliminary Investigation of the 'Learnable Evolution Model' for Faster/Better Multiobjective Water Systems Design , 2005, EMO.

[23]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[24]  Otthein Herzog,et al.  The learnable evolution model in agent-based delivery optimization , 2012, Memetic Computing.

[25]  Wei Luo,et al.  Improved Differential Evolution With a Modified Orthogonal Learning Strategy , 2017, IEEE Access.

[26]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[27]  Kenneth de Jong,et al.  Evolutionary computation: a unified approach , 2007, GECCO.

[28]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[29]  Ryszard S. Michalski,et al.  LEARNABLE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning , 2004, Machine Learning.

[30]  Lixin Tang,et al.  Differential Evolution With an Individual-Dependent Mechanism , 2015, IEEE Transactions on Evolutionary Computation.

[31]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[32]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[33]  Kenneth A. Kaufman,et al.  Recent Results from the Experimental Evaluation of the Learnable Evolution Model , 2002, GECCO Late Breaking Papers.

[34]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[35]  David W. Corne,et al.  Learning-assisted evolutionary search for scalable function optimization: LEM(ID3) , 2010, IEEE Congress on Evolutionary Computation.