Latent Position Network Models

In this chapter, we present a review of latent position models for networks. We review the recent literature in this area and illustrate the basic aspects and properties of this modeling framework. Through several illustrative examples we highlight how the latent position model is able to capture important features of observed networks. We emphasize how the canonical design of this model has made it popular thanks to its ability to provide interpretable visualizations of complex network interactions. We outline the main extensions that have been introduced to this model, illustrating its flexibility and applicability.

[1]  M. Oppenheimer,et al.  Complex climate and network effects on internal migration in South Africa revealed by a network model , 2022, Population and Environment.

[2]  Neil A. Spencer,et al.  Faster MCMC for Gaussian latent position network models , 2020, Network Science.

[3]  Joshua Neil,et al.  Anomaly Detection in Large-Scale Networks With Latent Space Models , 2019, Technometrics.

[4]  Yan Liu,et al.  Variational Inference for Latent Space Models for Dynamic Networks , 2021, 2105.14093.

[5]  Marco Corneli,et al.  Continuous latent position models for instantaneous interactions , 2021, Netw. Sci..

[6]  Amanda M. Y. Chu,et al.  Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model , 2021, International journal of environmental research and public health.

[7]  Juan Sosa,et al.  A Review of Latent Space Models for Social Networks , 2020, Revista Colombiana de Estadística.

[8]  Daniel K. Sewell,et al.  Model-Based Edge Clustering , 2020, J. Comput. Graph. Stat..

[9]  Emanule Aliverti,et al.  Stratified Stochastic Variational Inference for High-Dimensional Network Factor Model , 2020, J. Comput. Graph. Stat..

[10]  Francesco Sanna Passino,et al.  Link prediction in dynamic networks using random dot product graphs , 2019, Data Mining and Knowledge Discovery.

[11]  Riccardo Rastelli,et al.  Measuring systemic risk and contagion in the European financial network , 2019, Empirical Economics.

[12]  Fangzheng Xie,et al.  Efficient Estimation for Random Dot Product Graphs via a One-Step Procedure , 2019, Journal of the American Statistical Association.

[13]  Peter D. Hoff,et al.  Additive and Multiplicative Effects Network Models , 2018, Statistical Science.

[14]  Thomas Brendan Murphy,et al.  Modeling the social media relationships of Irish politicians using a generalized latent space stochastic blockmodel , 2018, The Annals of Applied Statistics.

[15]  C. Priebe,et al.  On Estimation and Inference in Latent Structure Random Graphs , 2018, Statistical Science.

[16]  Cosma Rohilla Shalizi,et al.  Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations , 2016, Journal of the American Statistical Association.

[17]  Ji Zhu,et al.  A Flexible Latent Space Model for Multilayer Networks , 2020, ICML.

[18]  T. Sweet,et al.  A Latent Space Network Model for Social Influence , 2020, Psychometrika.

[19]  James D. Wilson,et al.  A Hierarchical Latent Space Network Model for Population Studies of Functional Connectivity , 2020, Computational Brain & Behavior.

[20]  James D. Wilson,et al.  A Hierarchical Latent Space Network Model for Population Studies of Functional Connectivity , 2020, Computational Brain & Behavior.

[21]  Thomas Brendan Murphy,et al.  Modeling node heterogeneity in latent space models for multidimensional networks , 2019, Statistica Neerlandica.

[22]  Zhiyong Zhang,et al.  Social Network Mediation Analysis: A Latent Space Approach , 2018, Psychometrika.

[23]  Fernando Linardi,et al.  UvA-DARE ( Digital Academic Repository ) Dynamic Interbank Network Analysis Using Latent Space Models , 2022 .

[24]  Xinqiang Ding,et al.  Deciphering protein evolution and fitness landscapes with latent space models , 2019, Nature Communications.

[25]  Daniel K. Sewell Latent space models for network perception data , 2019, Network Science.

[26]  T. B. Murphy,et al.  Generalized Random Dot Product graph , 2019, Statistics & Probability Letters.

[27]  Daniele Durante,et al.  Spatial modeling of brain connectivity data via latent distance models with nodes clustering , 2019, Stat. Anal. Data Min..

[28]  Thomas Brendan Murphy,et al.  Latent space modelling of multidimensional networks with application to the exchange of votes in Eurovision song contest , 2018, The Annals of Applied Statistics.

[29]  Dena Marie Asta,et al.  The Geometry of Continuous Latent Space Models for Network Data , 2017, Statistical science : a review journal of the Institute of Mathematical Statistics.

[30]  Minjeong Jeon,et al.  A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data , 2016, Psychometrika.

[31]  Thomas Brendan Murphy,et al.  Multiresolution Network Models , 2016, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[32]  Riccardo Rastelli,et al.  The Sparse Latent Position Model for nonnegative weighted networks , 2018, 1808.09262.

[33]  Nial Friel,et al.  Computationally efficient inference for latent position network models , 2018, 1804.02274.

[34]  Kevin Lee,et al.  A review of dynamic network models with latent variables. , 2017, Statistics surveys.

[35]  Daniele Durante,et al.  Rejoinder: Nonparametric Bayes Modeling of Populations of Networks , 2017 .

[36]  Adrian E Raftery,et al.  Comment: Extending the Latent Position Model for Networks , 2017, Journal of the American Statistical Association.

[37]  Giulia Berlusconi,et al.  The determinants of heroin flows in Europe: A latent space approach , 2017, Soc. Networks.

[38]  Tyler H McCormick,et al.  LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA. , 2017, The annals of applied statistics.

[39]  Yuguo Chen,et al.  Latent Space Approaches to Community Detection in Dynamic Networks , 2017, 2005.08276.

[40]  Emily B. Fox,et al.  Sparse graphs using exchangeable random measures , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[41]  Nial Friel,et al.  Bayesian model selection for the latent position cluster model for social networks , 2013, Network Science.

[42]  Yuguo Chen,et al.  Latent space models for dynamic networks with weighted edges , 2020, Soc. Networks.

[43]  Adrian E Raftery,et al.  Interlocking directorates in Irish companies using a latent space model for bipartite networks , 2016, Proceedings of the National Academy of Sciences.

[44]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[45]  Adrian E. Raftery,et al.  Properties of latent variable network models , 2015, Network Science.

[46]  T. B. Murphy,et al.  Joint Modelling of Multiple Network Views , 2013, 1301.3759.

[47]  Yuguo Chen,et al.  Latent Space Models for Dynamic Networks , 2015, 2005.08808.

[48]  Yuguo Chen,et al.  Analysis of the formation of the structure of social networks by using latent space models for ranked dynamic networks , 2015, 2005.08269.

[49]  Daniele Durante,et al.  Locally Adaptive Dynamic Networks , 2015, 1505.05668.

[50]  Jeyanthi Salem Narasimhan,et al.  Link Prediction in Dynamic Networks , 2015 .

[51]  Daniele Durante,et al.  Bayesian Inference and Testing of Group Differences in Brain Networks , 2014, 1411.6506.

[52]  Catherine Matias,et al.  MODELING HETEROGENEITY IN RANDOM GRAPHS THROUGH LATENT SPACE MODELS: A SELECTIVE REVIEW , 2014 .

[53]  Grace S. Chiu,et al.  A statistical social network model for consumption data in trophic food webs , 2010, 1006.4432.

[54]  Brian W. Junker,et al.  Hierarchical Network Models for Education Research , 2013 .

[55]  Michael D. Ward,et al.  Gravity's Rainbow: A dynamic latent space model for the world trade network , 2013, Network Science.

[56]  Thomas Brendan Murphy,et al.  Variational Bayesian inference for the Latent Position Cluster Model , 2009, NIPS 2009.

[57]  Thomas Brendan Murphy,et al.  Review of statistical network analysis: models, algorithms, and software , 2012, Stat. Anal. Data Min..

[58]  Peter D. Hoff,et al.  Fast Inference for the Latent Space Network Model Using a Case-Control Approximate Likelihood , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[59]  Grace S. Chiu,et al.  A unifying approach for food webs, phylogeny, social networks, and statistics , 2011, Proceedings of the National Academy of Sciences.

[60]  Anton H. Westveld,et al.  A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict , 2010, 1009.1436.

[61]  Peter D. Hoff,et al.  Hierarchical multilinear models for multiway data , 2010, Comput. Stat. Data Anal..

[62]  I. C. Gormley,et al.  A mixture of experts latent position cluster model for social network data , 2010 .

[63]  Adrian E. Raftery,et al.  Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models , 2009, Soc. Networks.

[64]  Pavel N Krivitsky,et al.  Fitting Position Latent Cluster Models for Social Networks with latentnet. , 2008, Journal of statistical software.

[65]  C. Nickel RANDOM DOT PRODUCT GRAPHS A MODEL FOR SOCIAL NETWORKS , 2008 .

[66]  Edward R. Scheinerman,et al.  Random Dot Product Graph Models for Social Networks , 2007, WAW.

[67]  Peter D. Hoff,et al.  Modeling homophily and stochastic equivalence in symmetric relational data , 2007, NIPS.

[68]  Andrei Z. Broder,et al.  Workshop on Algorithms and Models for the Web Graph , 2007, WAW.

[69]  Susan M. Shortreed,et al.  Positional Estimation Within a Latent Space Model for Networks , 2006 .

[70]  Thomas Brendan Murphy,et al.  A Latent Space Model for Rank Data , 2006, SNA@ICML.

[71]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[72]  A. Moore,et al.  Dynamic social network analysis using latent space models , 2005, SKDD.

[73]  Peter D. Hoff,et al.  Bilinear Mixed-Effects Models for Dyadic Data , 2005 .

[74]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[75]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[76]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[77]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[78]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[79]  Yuchung J. Wang,et al.  Stochastic Blockmodels for Directed Graphs , 1987 .

[80]  R. Plackett The Analysis of Permutations , 1975 .

[81]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .