An analysis of risk measures

losses such as value-at-risk may not contain enough, or the right, information for risk managers. This paper presents a comprehensive empirical analysis of a set of left-tail measures (LTMs): the mean and standard deviation of a loss larger than the VAR (MLL and SDLL) and the VAR. We investigate the empirical dynamics of the LTMs. We present a robust and unified framework, the Arch quantile regression approach, in estimating the LTMs. Our Monte Carlo simulation shows that the VAR is appropriate for risk management when returns follow Gaussian processes, but the MLL strategy and strategies accounting for the SDLL are useful in reducing the risk of large losses under non-normal distributions and when there are jumps in asset prices.

[1]  Ian Barrodale,et al.  Algorithm 478: Solution of an Overdetermined System of Equations in the l1 Norm [F4] , 1974, Commun. ACM.

[2]  Dennis D. Boos,et al.  Using extreme value theory to estimate large percentiles , 1984 .

[3]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[4]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[5]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[6]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[7]  Moshe Buchinsky CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .

[8]  K. D. Zylan,et al.  Article , 1996, Physiology & Behavior.

[9]  Roger Koenker,et al.  Conditional Quantile Estimation and Inference for Arch Models , 1996, Econometric Theory.

[10]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[11]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[12]  Guojun Wu,et al.  Asymmetric Volatility and Risk in Equity Markets , 1997 .

[13]  Jacob Boudoukh,et al.  Investigation of a Class of Volatility Estimators , 1997 .

[14]  Dong-Hyun Ahn,et al.  Optimal Risk Management Using Options , 1997 .

[15]  Alexander J. McNeil,et al.  Calculating quantile risk measures for financial return series using extreme value theory , 1998 .

[16]  Alan G. White,et al.  Value at Risk When Daily Changes in Market Variables are not Normally Distributed , 1998 .

[17]  Anthony Saunders,et al.  Financial Institutions Management: A Modern Perspective , 1999 .

[18]  Suleyman Basak,et al.  Value-at-Risk Based Risk Management: Optimal Policies and Asset Prices , 1999 .

[19]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[20]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[21]  Salih N. Neftçi Value at Risk Calculations, Extreme Events, and Tail Estimation , 2000 .

[22]  Guojun Wu,et al.  The Determinants of Asymmetric Volatility , 2001 .

[23]  Svetlozar T. Rachev,et al.  Stable modeling of value at risk , 2001 .

[24]  Zhijie Xiao,et al.  A generalized partially linear model of asymmetric volatility , 2002 .

[25]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .