Silicon nanowires as efficient thermoelectric materials

[1]  R. Maranganti,et al.  Length scales at which classical elasticity breaks down for various materials. , 2007, Physical review letters.

[2]  D. MacDonald Thermoelectricity: An Introduction to the Principles , 2006 .

[3]  James R Heath,et al.  Complementary symmetry silicon nanowire logic: power-efficient inverters with gain. , 2006, Small.

[4]  Ke Xu,et al.  Size‐Dependent Transport and Thermoelectric Properties of Individual Polycrystalline Bismuth Nanowires , 2006 .

[5]  H. Linke,et al.  Reversible thermoelectric nanomaterials. , 2004, Physical review letters.

[6]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[7]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[8]  Wei Chen,et al.  Cubic : Bulk Thermoelectric Materials with High Figure of Merit , 2004 .

[9]  P. Kim,et al.  Modulation of thermoelectric power of individual carbon nanotubes. , 2003, Physical review letters.

[10]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[11]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[12]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[13]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[14]  Yu-Ming Lin,et al.  Semimetal–semiconductor transition in Bi1−xSbx alloy nanowires and their thermoelectric properties , 2002 .

[15]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[16]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[17]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[18]  Brian C. Sales,et al.  Thermoelectric Materials: New Approaches to an Old Problem , 1997 .

[19]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[21]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[22]  L. Weber,et al.  Transport properties of silicon , 1991 .

[23]  Erwin Behnen,et al.  Quantitative examination of the thermoelectric power of n-type Si in the phonon drag regime , 1990 .

[24]  R. Aster,et al.  New approaches to an old problem , 1988 .

[25]  Queisser,et al.  Quenched phonon -drag in silicon microcontacts. , 1986, Physical review letters.

[26]  David Michael Rowe,et al.  Recent developments in thermoelectric materials , 1986 .

[27]  T. Geballe,et al.  Seebeck Effect in Silicon , 1955 .

[28]  J. Tauc,et al.  Theory of Thermoelectric Power in Semiconductors , 1954 .

[29]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[30]  S. Timoshenko,et al.  Theory of elasticity , 1975 .