A Probabilistic Model of Fuzzy Clustering Ensemble

A probabilistic model of clustering ensemble based on a collection of fuzzy clustering algorithms and a weighted co-association matrix is proposed. An expression for the upper bound of the misclassification probability of an arbitrary pair of objects is obtained depending on the characteristics of the ensemble. This expression is used to determine the optimal weights of the algorithms.

[1]  V. Ryazanov On the synthesis of classifying algorithms in finite sets of classification algorithms (taxonomy) , 1982 .

[2]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[3]  Pan Su,et al.  Link-based pairwise similarity matrix approach for fuzzy c-means clustering ensemble , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[4]  Mark A. Girolami,et al.  Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.

[5]  Joan Claudi Socoró,et al.  Positional and confidence voting-based consensus functions for fuzzy cluster ensembles , 2012, Fuzzy Sets Syst..

[6]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[7]  Vladimir B. Berikov Cluster Ensemble with Averaged Co-Association Matrix Maximizing the Expected Margin , 2016, DOOR.

[8]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[9]  Joydeep Ghosh,et al.  Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.

[10]  Sandro Vega-Pons,et al.  A Survey of Clustering Ensemble Algorithms , 2011, Int. J. Pattern Recognit. Artif. Intell..

[11]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[12]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[13]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[15]  Limin Fu,et al.  FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data , 2007, BMC Bioinformatics.

[16]  G. Valentini,et al.  Ensemble Clustering with a Fuzzy Approach , 2008 .

[17]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[18]  Manoranjan Dash,et al.  Entropy-based fuzzy clustering and fuzzy modeling , 2000, Fuzzy Sets Syst..

[19]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[20]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[21]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[22]  Ana L. N. Fred,et al.  Analysis of consensus partition in cluster ensemble , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).