Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery

Insulators and semiconductors are used extensively in industry and a data-driven approach is necessary to investigate the properties of these materials. A new theory of electronic properties is consistent with findings from experiments of transition-metal oxides.

[1]  S. Curtarolo,et al.  Nanograined Half‐Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High‐Throughput Statistical Study , 2014, 1408.5859.

[2]  Marco Buongiorno Nardelli,et al.  High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model , 2014, 1407.7789.

[3]  R. Armiento,et al.  Theoretical unification of hybrid-DFT and DFT + U methods for the treatment of localized orbitals , 2014, 1406.2944.

[4]  E. Carter,et al.  Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion , 2014, The journal of physical chemistry. B.

[5]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[6]  S. Louie,et al.  First-principles DFT plus GW study of oxygen vacancies in rutile TiO2 , 2014, 1407.5706.

[7]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[8]  Gus L. W. Hart,et al.  Subject Areas : Materials Science A Viewpoint on : Comprehensive Search for New Phases and Compounds in Binary Alloy Systems Based on Platinum-Group Metals , Using a Computational First-Principles Approach , 2013 .

[9]  Yongfa Zhu,et al.  Correlation Effects on Lattice Relaxation and Electronic Structure of ZnO within the GGA+U Formalism , 2013 .

[10]  Marco Buongiorno Nardelli,et al.  Effective and accurate representation of extended Bloch states on finite Hilbert spaces , 2013, 1310.0060.

[11]  Stefano de Gironcoli,et al.  Hubbard‐corrected DFT energy functionals: The LDA+U description of correlated systems , 2013, 1309.3355.

[12]  Ferdi Aryasetiawan,et al.  First-principles calculations of dynamical screened interactions for the transition metal oxides MO (M = Mn, Fe, Co, Ni) , 2013 .

[13]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[14]  A. Zunger,et al.  Angle-resolved photoemission and quasiparticle calculation of ZnO: The need for d band shift in oxide semiconductors , 2012 .

[15]  Wenqing Zhang,et al.  Screened Coulomb interaction of localized electrons in solids from first principles , 2012 .

[16]  袁勋,et al.  Screened Coulomb interactions of localized electrons in transition metals and transition-metal oxides , 2012 .

[17]  J. Robertson,et al.  Accurate screened exchange band structures for the transition metal monoxides MnO, FeO, CoO and NiO , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Stefano Curtarolo,et al.  A search model for topological insulators with high-throughput robustness descriptors. , 2012, Nature materials.

[19]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[20]  W. Schmidt,et al.  The electronic structure and optical response of rutile, anatase and brookite TiO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  F. Giustino,et al.  GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Yong-Sung Kim,et al.  Linear-response calculation of the effective coulomb interaction between closed-shell localized electrons: Cu, Zn, and ZnO , 2012, 1403.5062.

[23]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[24]  Stefano Curtarolo,et al.  Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations , 2011 .

[25]  Stefano de Gironcoli,et al.  Vibrational properties of MnO and NiO from DFT +U-based density functional perturbation theory , 2011 .

[26]  Gerbrand Ceder,et al.  Screening for high-performance piezoelectrics using high-throughput density functional theory , 2011 .

[27]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[28]  A. Catellani,et al.  Anchor group versus conjugation: toward the gap-state engineering of functionalized ZnO(1010) surface for optoelectronic applications. , 2011, Journal of the American Chemical Society.

[29]  Yoshio Nishi,et al.  Electronic correlation effects in reduced rutile TiO 2 within the LDA+U method , 2010 .

[30]  J. Robertson,et al.  Screened exchange density functional applied to solids , 2010 .

[31]  M. Scheffler,et al.  First-principles modeling of localized d states with the GW@LDA+U approach , 2010 .

[32]  M. Hybertsen,et al.  Quasiparticle and optical properties of rutile and anatase TiO 2 , 2010, 1006.4085.

[33]  M. Menon,et al.  LSDA+U method: A calculation of the U values at the Hartree-Fock level of approximation , 2010 .

[34]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[35]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Frank Fuchs,et al.  Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO , 2009 .

[37]  Takashi Miyake,et al.  Ab initio procedure for constructing effective models of correlated materials with entangled band structure , 2009, 0906.1344.

[38]  Y. Nohara,et al.  GW approximation with LSDA + U method and applications to NiO, MnO, and V 2 O 3 , 2008, 0809.4568.

[39]  Emily A Carter,et al.  Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. , 2008, The Journal of chemical physics.

[40]  W. Lambrecht,et al.  First-principles calculation of the O vacancy in ZnO: A self-consistent gap-corrected approach , 2008 .

[41]  L. D. Finkelstein,et al.  Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides , 2008 .

[42]  A. Freeman,et al.  Electronic structures and optical properties of GaN and ZnOnanowires from first principles , 2008 .

[43]  L. Kronik,et al.  Orbital-dependent density functionals: Theory and applications , 2008 .

[44]  Emily A. Carter,et al.  Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations , 2007 .

[45]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[46]  Georg Kresse,et al.  Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations , 2007 .

[47]  N. A. Deskins,et al.  Electron transport via polaron hopping in bulk TiO2 : A density functional theory characterization , 2007 .

[48]  Ho‐Jun Suk,et al.  Optical Properties of Black NiO and CoO Single Crystals Studied with Spectroscopic Ellipsometry , 2007 .

[49]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[50]  Michael J Frisch,et al.  Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. , 2006, The Journal of chemical physics.

[51]  Shishen Yan,et al.  First-principles LDA + U calculations of the Co-doped ZnO magnetic semiconductor , 2006 .

[52]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[53]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[54]  F. Bechstedt,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2006, cond-mat/0604447.

[55]  浩巳 中井,et al.  Heyd-Scuseria-Ernzerhof遮蔽クーロンハイブリッド汎関数を用いた周期境界条件(PBC)計算:アナターゼ型およびルチル型TiO2の電子構造 , 2006 .

[56]  F. Aryasetiawan,et al.  Calculations of Hubbard U from first-principles , 2006, cond-mat/0603138.

[57]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[58]  C. Persson,et al.  Strong polaronic effects on rutile TiO2 electronic band edges , 2005 .

[59]  Steven G. Louie,et al.  Quasiparticle energy bands of NiO in the GW approximation , 2005 .

[60]  Jinghua Guo,et al.  Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation , 2004 .

[61]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[62]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2003, Physical review letters.

[63]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[64]  D. Heskett,et al.  Hybridization and bond-orbital components in site-specific X-ray photoelectron spectra of rutile TiO2. , 2002, Physical review letters.

[65]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000, cond-mat/0010454.

[66]  R. Mathar Orthogonal Linear Combinations of Gaussian Type Orbitals , 1999, physics/9907051.

[67]  D. C. Reynolds,et al.  Valence-Band Ordering in ZnO , 1999 .

[68]  P. Blaha,et al.  Electronic structure of 3d-transition-metal oxides: on-site Coulomb repulsion versus covalency , 1999 .

[69]  F. Aryasetiawan,et al.  FREQUENCY-DEPENDENT SCREENED INTERACTION IN NI WITHIN THE RANDOM-PHASE APPROXIMATION , 1998 .

[70]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[71]  Alessandra Continenza,et al.  Quasiparticle energy bands of transition-metal oxides within a model GW scheme , 1997 .

[72]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[73]  E. Ethridge,et al.  Reformulation of the LDA+U method for a local orbital basis , 1996, cond-mat/9611225.

[74]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[75]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[76]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[77]  Krüger,et al.  Self-interaction and relaxation-corrected pseudopotentials for II-VI semiconductors. , 1996, Physical review. B, Condensed matter.

[78]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[79]  Klaus Reimann,et al.  Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure , 1995 .

[80]  Gunnarsson,et al.  Linear-muffin-tin-orbital method with multiple orbitals per L channel. , 1994, Physical review. B, Condensed matter.

[81]  Y. Tezuka,et al.  Photoemission and Bremsstrahlung Isochromat Spectroscopy Studies of TiO2 (Rutile) and SrTiO3 , 1994 .

[82]  R. Dovesi,et al.  Ab initio Hartree-Fock treatment of ionic and semi-ionic compounds: state of the art , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[83]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[84]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[85]  Berger,et al.  Electronic structure of MnO. , 1990, Physical review. B, Condensed matter.

[86]  Roberto Dovesi,et al.  Ab initio Hartree-Fock calculations for periodic compounds: application to semiconductors , 1990 .

[87]  Roberto Dovesi,et al.  Ab initio approach to molecular crystals: A periodic Hartree–Fock study of crystalline urea , 1990 .

[88]  Vladimir I. Anisimov,et al.  Band-structure description of Mott insulators (NiO, MnO, FeO, CoO) , 1990 .

[89]  O. Gunnarsson,et al.  Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe. , 1989, Physical review. B, Condensed matter.

[90]  J. Allen,et al.  Magnitude and origin of the band gap in NiO , 1984 .

[91]  A. Fujimori,et al.  Valence-band photoemission and optical absorption in nickel compounds , 1984 .

[92]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[93]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[94]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[95]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[96]  Richard D. Leapman,et al.  Oxygen K near-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected 3 d Transition-metal oxides , 1982 .

[97]  Roberto Dovesi,et al.  Exact–exchange Hartree–Fock calculations for periodic systems , 1981 .

[98]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[99]  Roberto Dovesi,et al.  Exact-exchange Hartree–Fock calculations for periodic systems. I. Illustration of the method† , 1980 .

[100]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[101]  D. A. Shirley,et al.  The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2) , 1977 .

[102]  J. B. Collins,et al.  Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets , 1976 .

[103]  D. A. Shirley,et al.  Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy. [GaSb; InSb] , 1974 .

[104]  W. Spicer,et al.  Photoemission studies of wurtzite zinc oxide. , 1972 .

[105]  S. Abrahams,et al.  Rutile: Normal Probability Plot Analysis and Accurate Measurement of Crystal Structure , 1971 .

[106]  D. Langer,et al.  Electronic Core Levels of theIIB−VIACompounds , 1971 .

[107]  R. J. Powell,et al.  Optical Properties of NiO and CoO , 1970 .

[108]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[109]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[110]  J. Robertson,et al.  First-principles study of Oxygen deficiency in rutile Titanium Dioxide , 2011 .

[111]  K. Nakamura,et al.  Electronic structures and optical properties of GaN and ZnO nanowires from first principles , 2008 .

[112]  Alan Dix,et al.  the stuff of dreams , 2007 .

[113]  R. Mathar Mutual Conversion of Three Flavors of Gaussian Type Orbitals , 2002 .

[114]  Roberto Dovesi,et al.  The Periodic Hartree‐Fock Method and Its Implementation in the CRYSTAL Code , 2000 .

[115]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[116]  Per-Olov Löwdin,et al.  On the Nonorthogonality Problem , 1970 .

[117]  Harry B. Gray,et al.  Molecular orbital theory: An introductory lecture note and reprint volume , 1965 .