Microbial rhodopsins in the spotlight

The discovery of the light-gated cation channel Channelrhodopsin-2 (ChR2) and the use of the rediscovered light-driven Cl-pump halorhodopsin (HR) as optogenetic tools--genetically encoded switches that enable neurons to be turned on or off with bursts of light--refines the functional study of neurons in larger networks. Cell-specific expression allows a fast optical scanning approach to determine neuronal crosstalk following plasticity at the single synapse level or long-range projections in locomotion and somatosensory networks. Both rhodopsins proved to work functionally and could evoke behavioral responses in lower model organisms, reinstall rudimentary visual perception in blind mice and were set in a biomedical context with the investigation of neurodegenerative diseases.

[1]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[2]  R Y Tsien,et al.  Controlling cell chemistry with caged compounds. , 1993, Annual review of physiology.

[3]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[4]  H. Hutter,et al.  An ER‐resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse , 2009, The EMBO journal.

[5]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[6]  Karl Deisseroth,et al.  Optogenetic control of epileptiform activity , 2009, Proceedings of the National Academy of Sciences.

[7]  Eriko Sugano,et al.  Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. , 2010, Experimental eye research.

[8]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[9]  E. Bamberg,et al.  Channelrhodopsin-2 is a leaky proton pump , 2009, Proceedings of the National Academy of Sciences.

[10]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[11]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[12]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[13]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[14]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[16]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[17]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[18]  Yoon-Kyu Song,et al.  Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection , 2008 .

[19]  Patrick Degenaar,et al.  Photocycles of Channelrhodopsin‐2 , 2009, Photochemistry and photobiology.

[20]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[21]  Karl Deisseroth,et al.  Improved expression of halorhodopsin for light-induced silencing of neuronal activity , 2008, Brain cell biology.

[22]  Devanand S. Manoli,et al.  Manipulation of an Innate Escape Response in Drosophila: Photoexcitation of acj6 Neurons Induces the Escape Response , 2009, PloS one.

[23]  K. Svoboda,et al.  Myosin-dependent targeting of transmembrane proteins to neuronal dendrites , 2009, Nature Neuroscience.

[24]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[25]  Karl Deisseroth,et al.  High-Speed Imaging Reveals Neurophysiological Links to Behavior in an Animal Model of Depression , 2007, Science.

[26]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[27]  Patrick Degenaar,et al.  Multi-site optical excitation using ChR2 and micro-LED array , 2010, Journal of neural engineering.

[28]  Bozhi Tian,et al.  Nanowire transistor arrays for mapping neural circuits in acute brain slices , 2010, Proceedings of the National Academy of Sciences.

[29]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Ernst Bamberg,et al.  Conformational changes of channelrhodopsin-2. , 2009, Journal of the American Chemical Society.

[31]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[32]  T. Oertner,et al.  Optical induction of synaptic plasticity using a light-sensitive channel , 2007, Nature Methods.

[33]  Peter Hegemann,et al.  Monitoring Light-induced Structural Changes of Channelrhodopsin-2 by UV-visible and Fourier Transform Infrared Spectroscopy* , 2008, Journal of Biological Chemistry.

[34]  Zhuo-Hua Pan,et al.  Ectopic Expression of Multiple Microbial Rhodopsins Restores ON and OFF Light Responses in Retinas with Photoreceptor Degeneration , 2009, The Journal of Neuroscience.

[35]  Tobias Rose,et al.  Optimizing the spatial resolution of Channelrhodopsin-2 activation , 2008, Brain cell biology.

[36]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[37]  B. Connors,et al.  Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue , 2009, Journal of neural engineering.

[38]  D. Tank,et al.  Two-photon excitation of channelrhodopsin-2 at saturation , 2009, Proceedings of the National Academy of Sciences.

[39]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[40]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[41]  O. Kiehn,et al.  Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion , 2010, Nature Neuroscience.

[42]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[43]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  F. Engert,et al.  Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.

[45]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[46]  Ernst Bamberg,et al.  Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. , 2008, Journal of molecular biology.

[47]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[48]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[49]  E. Bamberg,et al.  Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. , 2010, Biochemistry.

[50]  M. Berns,et al.  In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. , 2008, Biophysical journal.

[51]  Thomas G. Oertner,et al.  Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII , 2008, Proceedings of the National Academy of Sciences.

[52]  Timothy W. Dunn,et al.  Photochemical control of endogenous ion channels and cellular excitability , 2008, Nature Methods.

[53]  Peter Hegemann,et al.  Multiple photocycles of channelrhodopsin. , 2005, Biophysical journal.

[54]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[55]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[56]  Herwig Baier,et al.  Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor , 2007, Neuron.

[57]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[58]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[59]  Hillel Adesnik,et al.  Neocortical Disynaptic Inhibition Requires Somatodendritic Integration in Interneurons , 2009, The Journal of Neuroscience.

[60]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[61]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[62]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.