Improved opponent color local binary patterns: an effective local image descriptor for color texture classification

Abstract. Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.

[1]  Francesco Bianconi,et al.  A Unifying Framework for LBP and Related Methods , 2013, Local Binary Patterns.

[2]  Henryk Palus,et al.  Representations of colour images in different colour spaces , 1998 .

[3]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[4]  Luiz Eduardo Soares de Oliveira,et al.  Breast cancer histopathological image classification using Convolutional Neural Networks , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[5]  Kosin Chamnongthai,et al.  Fusion of color histogram and LBP-based features for texture image retrieval and classification , 2017, Inf. Sci..

[6]  Francesco Bianconi,et al.  Texture Classification Through Combination of Sequential Colour Texture Classifiers , 2007, CIARP.

[7]  Lewis D. Griffin,et al.  Texture classification with a dictionary of basic image features , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Paolo Napoletano,et al.  Combining local binary patterns and local color contrast for texture classification under varying illumination. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[10]  Loris Nanni,et al.  Local binary patterns variants as texture descriptors for medical image analysis , 2010, Artif. Intell. Medicine.

[11]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[12]  Chengjun Liu,et al.  New image descriptors based on color, texture, shape, and wavelets for object and scene image classification , 2013, Neurocomputing.

[13]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[14]  Xianghua Xie,et al.  A Galaxy of Texture Features , 2008 .

[15]  Francesco Bianconi,et al.  An investigation on the use of local multi-resolution patterns for image classification , 2016, Inf. Sci..

[16]  Manuel Fernández Delgado,et al.  Influence of normalization and color space to color texture classification , 2017, Pattern Recognit..

[17]  Michael Felsberg,et al.  Compact color-texture description for texture classification , 2015, Pattern Recognit. Lett..

[18]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Paolo Napoletano,et al.  Local Angular Patterns for Color Texture Classification , 2015, ICIAP Workshops.

[20]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[21]  Fernando López-García,et al.  Performance evaluation of soft color texture descriptors for surface grading using experimental design and logistic regression , 2008, Pattern Recognit..

[22]  Marcos X. Álvarez-Cid,et al.  Texture Description Through Histograms of Equivalent Patterns , 2012, Journal of Mathematical Imaging and Vision.

[23]  Christoph Palm,et al.  Color texture classification by integrative Co-occurrence matrices , 2004, Pattern Recognit..

[24]  Chengjun Liu,et al.  Novel Color LBP Descriptors for Scene and Image Texture Classification , 2022 .

[25]  André Ricardo Backes,et al.  Color texture analysis based on fractal descriptors , 2012, Pattern Recognit..

[26]  M. Pietikäinen,et al.  TEXTURE ANALYSIS WITH LOCAL BINARY PATTERNS , 2004 .

[27]  Paul F. Whelan,et al.  Image segmentation based on the integration of colour-texture descriptors - A review , 2011, Pattern Recognit..

[28]  Hanqing Lu,et al.  Face detection using improved LBP under Bayesian framework , 2004, Third International Conference on Image and Graphics (ICIG'04).

[29]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[30]  Lior Shamir,et al.  IICBU 2008: a proposed benchmark suite for biological image analysis , 2008, Medical & Biological Engineering & Computing.

[31]  Yong Man Ro,et al.  Local Color Vector Binary Patterns From Multichannel Face Images for Face Recognition , 2012, IEEE Transactions on Image Processing.

[32]  Jakob Nikolas Kather,et al.  Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images , 2015, Oncotarget.

[33]  Loris Nanni,et al.  Multilayer descriptors for medical image classification , 2016, Comput. Biol. Medicine.

[34]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[35]  Zoran Obradovic,et al.  A Robust Descriptor for Color Texture Classification Under Varying Illumination , 2017, VISIGRAPP.

[36]  L. Macaire,et al.  Haralick feature extraction from LBP images for color texture classification , 2008, 2008 First Workshops on Image Processing Theory, Tools and Applications.

[37]  Hannu Kauppinen,et al.  COLOR AND TEXTURE BASED WOOD INSPECTION WITH NON-SUPERVISED CLUSTERING , 2001 .

[38]  Paolo Napoletano,et al.  Hand-Crafted vs Learned Descriptors for Color Texture Classification , 2017, CCIW.

[39]  L. Nanni,et al.  Texture Descriptors Ensembles Enable Image-Based Classification of Maturation of Human Stem Cell-Derived Retinal Pigmented Epithelium , 2016, PloS one.

[40]  Matti Pietikäinen,et al.  Local Binary Patterns for Still Images , 2011 .

[41]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[42]  Paul Southam,et al.  Theoretical and experimental comparison of different approaches for color texture classification , 2011, J. Electronic Imaging.

[43]  Matti Pietikäinen,et al.  Local binary features for texture classification: Taxonomy and experimental study , 2017, Pattern Recognit..

[44]  Matti Pietikäinen,et al.  Identification of tumor epithelium and stroma in tissue microarrays using texture analysis , 2012, Diagnostic Pathology.

[45]  Dong-Chen He,et al.  Texture Unit, Texture Spectrum, And Texture Analysis , 1990 .

[46]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Guoyun Lian,et al.  Rotation invariant color texture classification using multiple sub-DLBPs , 2015, J. Vis. Commun. Image Represent..

[48]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[49]  Francesco Bianconi,et al.  Automatic Characterization of the Visual Appearance of Industrial Materials through Colour and Texture Analysis: An Overview of Methods and Applications , 2013 .

[50]  Vladimir Robles-Bykbaev,et al.  A proposal based on color descriptors and local binary patterns histogram as support tool in presumptive diagnosis of hiatus hernia , 2014, 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC).

[51]  Paul F. Whelan,et al.  Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification , 2011, Machine Vision and Applications.

[52]  Jarbas Joaci de Mesquita Sá Junior,et al.  Plant leaf identification using Gabor wavelets , 2009 .

[53]  Audrey Ledoux,et al.  Color local binary patterns: compact descriptors for texture classification , 2016, J. Electronic Imaging.

[54]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[55]  Paolo Napoletano,et al.  Combining multiple features for color texture classification , 2016, J. Electronic Imaging.

[56]  Francesco Bianconi,et al.  Multi-class texture analysis in colorectal cancer histology , 2016, Scientific Reports.

[57]  Matti Pietikäinen,et al.  Classification with color and texture: jointly or separately? , 2004, Pattern Recognit..

[58]  Paolo Napoletano,et al.  Evaluating color texture descriptors under large variations of controlled lighting conditions , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[60]  Shervan Fekri Ershad,et al.  Color Texture Classification Based on Proposed Impulse-Noise Resistant Color Local Binary Patterns and Significant Points Selection Algorithm , 2017, ArXiv.

[61]  Ludovic Macaire,et al.  CFA local binary patterns for fast illuminant-invariant color texture classification , 2012, Journal of Real-Time Image Processing.

[62]  Vincent Torre,et al.  Texture Classification Using Three Circular Filters , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[63]  Paolo Napoletano,et al.  Improved Opponent Colour Local Binary Patterns for Colour Texture Classification , 2017, CCIW.