A bio-inspired synergistic virtual retina model for tone mapping

Real-world radiance values span several orders of magnitudes which have to be processed by artificial systems in order to capture visual scenes with a high visual sensitivity. Interestingly, it has been found that similar processing happens in biological systems, starting at the retina level. So our motivation in this paper is to develop a new video tone mapping operator (TMO) based on a synergistic model of the retina. We start from the so-called Virtual Retina model, which has been developed in computational neuroscience. We show how to enrich this model with new features to use it as a TMO, such as color management, luminance adaptation at photoreceptor level and readout from a heterogeneous population activity. Our method works for video but can also be applied to static images (by repeating images in time). It has been carefully evaluated on standard benchmarks in the static case, giving comparable results to the state-of-the-art using default parameters, while offering user control for finer tuning. Results on HDR videos are also promising, specifically w.r.t. temporal luminance coherency. As a whole, this paper shows a promising way to address computational photography challenges by exploiting the current research in neuroscience about retina processing.

[1]  Steve Marschner,et al.  Perceptually based tone mapping of high dynamic range image streams , 2005, EGSR '05.

[2]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[3]  Ryad Benosman,et al.  Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device , 2012, Journal of neural engineering.

[4]  Yong-Jie Li,et al.  A Retina Inspired Model for High Dynamic Range Image Rendering , 2016, BICS.

[5]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[6]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[7]  Edward H. Adelson,et al.  Compressing and companding high dynamic range images with subband architectures , 2005, ACM Trans. Graph..

[8]  Christine D. Piatko,et al.  A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes , 1997, IEEE Trans. Vis. Comput. Graph..

[9]  Bruno Cessac,et al.  Modifying a biologically inspired retina simulator to reconstruct realistic responses to moving stimuli , 2017 .

[10]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[11]  Kenneth Chiu,et al.  Spatially Nonuniform Scaling Functions for High Contrast Images , 1993 .

[12]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[13]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[14]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[15]  J. B. Demb,et al.  Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities , 2003, The Journal of Neuroscience.

[16]  Laurence Meylan,et al.  Model of retinal local adaptation for the tone mapping of color filter array images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Rafal Mantiuk,et al.  Display adaptive tone mapping , 2008, ACM Trans. Graph..

[18]  Christophe Schlick,et al.  Quantization Techniques for Visualization of High Dynamic Range Pictures , 1995 .

[19]  F. Rieke Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.

[20]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[21]  Pierre Kornprobst,et al.  Another look at the retina as an image scalar quantizer , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[22]  Yves Frégnac,et al.  Adaptation of the simple or complex nature of V1 receptive fields to visual statistics , 2011, Nature Neuroscience.

[23]  J W GEBHARD,et al.  Pupil size as determined by adapting luminance. , 1952, Journal of the Optical Society of America.

[24]  Erik Reinhard,et al.  Parameter Estimation for Photographic Tone Reproduction , 2002, J. Graphics, GPU, & Game Tools.

[25]  Rahman Zia-ur,et al.  A Multiscale Retinex for Color Rendition and Dynamic Range Compression , 1996 .

[26]  Vijay Balasubramanian,et al.  Receptive fields and functional architecture in the retina , 2009, The Journal of physiology.

[27]  Robert Wanat,et al.  Evaluation of Tone Mapping Operators for HDR-Video , 2013, Comput. Graph. Forum.

[28]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[29]  F. Rieke,et al.  Light adaptation in cone vision involves switching between receptor and post-receptor sites , 2007, Nature.

[30]  Nikola K. Kasabov,et al.  Evaluating SPAN Incremental Learning for Handwritten Digit Recognition , 2012, ICONIP.

[31]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[32]  Patrick Le Callet,et al.  Spatio-temporal Tone Mapping Operator Based on a Retina Model , 2009, CCIW.

[33]  Kurt Debattista,et al.  Advanced High Dynamic Range Imaging: Theory and Practice , 2011 .

[34]  D. O’Carroll,et al.  Vision in dim light: highlights and challenges , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  Marcelo Bertalmío,et al.  Image Processing for Cinema , 2014 .

[36]  G M Megson,et al.  Comparison of Techniques , 1999 .

[37]  Michael Ashikhmin,et al.  A Tone Mapping Algorithm for High Contrast Images , 2002, Rendering Techniques.

[38]  Pierre Kornprobst,et al.  PRANAS: A New Platform for Retinal Analysis and Simulation , 2017, Front. Neuroinform..

[39]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[40]  Edoardo Provenzi,et al.  An Analysis of Visual Adaptation and Contrast Perception for Tone Mapping , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[42]  Jan Kautz,et al.  Consistent tone reproduction , 2008 .

[43]  Erik Reinhard,et al.  Calibrated image appearance reproduction , 2012, ACM Trans. Graph..

[44]  K. Hohn,et al.  Determining Lightness from an Image , 2004 .

[45]  Edward H. Adelson,et al.  Compressing and companding high dynamic range images with subband architectures , 2005, SIGGRAPH 2005.

[46]  Aljoscha Smolic,et al.  Suplemental Material for Temporally Coherent Local Tone Mapping of HDR Video , 2014 .

[47]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[48]  Pierre Kornprobst,et al.  Microsaccades enable efficient synchrony-based coding in the retina: a simulation study , 2016, Scientific Reports.

[49]  Hiroshi Yamaguchi,et al.  Evaluating HDR rendering algorithms , 2007, TAP.

[50]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[51]  Mark D. Fairchild,et al.  iCAM06: A refined image appearance model for HDR image rendering , 2007, J. Vis. Commun. Image Represent..

[52]  Zhou Wang,et al.  Objective Quality Assessment of Tone-Mapped Images , 2013, IEEE Transactions on Image Processing.

[53]  Charles P. Ratliff,et al.  Retina is structured to process an excess of darkness in natural scenes , 2010, Proceedings of the National Academy of Sciences.

[54]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[55]  Stephen Mangiat,et al.  High dynamic range video with ghost removal , 2010, Optical Engineering + Applications.

[56]  Wallace B. Thoreson,et al.  Lateral interactions in the outer retina , 2012, Progress in Retinal and Eye Research.

[57]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[58]  Alice Caplier,et al.  Using Human Visual System modeling for bio-inspired low level image processing , 2010, Comput. Vis. Image Underst..

[59]  Jack Tumblin,et al.  The Trilateral Filter for High Contrast Images and Meshes , 2003, Rendering Techniques.

[60]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[61]  Joachim Weickert,et al.  Simultaneous HDR and Optic Flow Computation , 2014, 2014 22nd International Conference on Pattern Recognition.

[62]  Pierre Kornprobst,et al.  Bio-inspired computer vision: Towards a synergistic approach of artificial and biological vision , 2016, Comput. Vis. Image Underst..

[63]  Max-Olivier Hongler,et al.  The Resonant Retina: Exploiting Vibration Noise to Optimally Detect Edges in an Image , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Wolfgang Heidrich,et al.  Color correction for tone mapping , 2009, Comput. Graph. Forum.

[65]  Matthew Casey,et al.  Simulating Light Adaptation in the Retina with Rod-Cone Coupling , 2012, ICANN.

[66]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[67]  Marc Antonini,et al.  Video analysis and synthesis based on a retinal-inspired frame , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[68]  Marcelo A. Montemurro,et al.  Information coding in a laminar computational model of cat primary visual cortex , 2012, Journal of Computational Neuroscience.

[69]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[70]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[71]  Hans-Peter Seidel,et al.  Dynamic range independent image quality assessment , 2008, ACM Transactions on Graphics.

[72]  Greg Ward,et al.  A Contrast-Based Scalefactor for Luminance Display , 1994, Graphics Gems.

[73]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.

[74]  Donald P. Greenberg,et al.  Time-dependent visual adaptation for fast realistic image display , 2000, SIGGRAPH.

[75]  Erik Reinhard,et al.  Special issue on high dynamic range imaging , 2007, J. Vis. Commun. Image Represent..

[76]  Marc Antonini,et al.  Retinal-inspired filtering for dynamic image coding , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[77]  Rafal Mantiuk,et al.  A comparative review of tone‐mapping algorithms for high dynamic range video , 2017, Comput. Graph. Forum.

[78]  Jean-Michel Morel,et al.  Multiscale Retinex , 2014, Image Process. Line.

[79]  Qasim Zaidi,et al.  Neuronal nonlinearity explains greater visual spatial resolution for darks than lights , 2014, Proceedings of the National Academy of Sciences.

[80]  J. H. van Hateren,et al.  Encoding of high dynamic range video with a model of human cones , 2006, TOGS.

[81]  Xiaonian Wang,et al.  Enhancement of image luminance resolution by imposing random jitter , 2011, Neural Computing and Applications.

[82]  Karol Myszkowski,et al.  Adaptive Logarithmic Mapping For Displaying High Contrast Scenes , 2003, Comput. Graph. Forum.

[83]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[84]  J. Yellott,et al.  A unified formula for light-adapted pupil size. , 2012, Journal of vision.

[85]  David D. Miller,et al.  The Application of Computer Graphics in Lighting Design , 1984 .

[86]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[87]  Christopher C. Pack,et al.  Contrast dependence of suppressive influences in cortical area MT of alert macaque. , 2005, Journal of neurophysiology.

[88]  Stephen A Baccus,et al.  Insights from the retina into the diverse and general computations of adaptation, detection, and prediction , 2014, Current Opinion in Neurobiology.

[89]  Magnus Oskarsson Democratic Tone Mapping Using Optimal K-means Clustering , 2015, SCIA.

[90]  Shao-Bing Gao,et al.  A Retina Inspired Model for Enhancing Visibility of Hazy Images , 2015, Front. Comput. Neurosci..

[91]  Timothée Masquelier,et al.  Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model , 2011, Journal of Computational Neuroscience.

[92]  Eli Shechtman,et al.  Patch-based high dynamic range video , 2013, ACM Trans. Graph..

[93]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[94]  R. Masland Cell populations of the retina: the Proctor lecture. , 2011, Investigative ophthalmology & visual science.

[95]  T. Martin McGinnity,et al.  Modelling of a retinal ganglion cell with simple spiking models , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[96]  Pierre Kornprobst,et al.  Retinal filtering and image reconstruction , 2009 .

[97]  Sumanta N. Pattanaik,et al.  Segmentation and adaptive assimilation for detail-preserving display of high-dynamic range images , 2003, The Visual Computer.

[98]  Erik Reinhard,et al.  Sky Based Light Metering for High Dynamic Range Images , 2014, Comput. Graph. Forum.

[99]  Pierre Kornprobst,et al.  Virtual Retina: A biological retina model and simulator, with contrast gain control , 2009, Journal of Computational Neuroscience.

[100]  Erik Reinhard,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Dynamic Range Reduction Inspired by Photoreceptor Physiology , 2022 .

[101]  Erik Reinhard,et al.  Photographic tone reproduction for digital images , 2002, ACM Trans. Graph..

[102]  Michael J. Berry,et al.  Alert Response to Motion Onset in the Retina , 2013, The Journal of Neuroscience.

[103]  P. Ala-Laurila,et al.  Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[104]  Tim Gollisch,et al.  Local and Global Contrast Adaptation in Retinal Ganglion Cells , 2013, Neuron.

[105]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting , 2010 .

[106]  Werner Purgathofer,et al.  A comparison of techniques for the transformation of radiosity values to monitor colors , 1994, Proceedings of 1st International Conference on Image Processing.

[107]  Kai Zeng,et al.  Objective quality assessment of tone-mapped videos , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[108]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[109]  Arnulf B. A. Graf,et al.  Decoding the activity of neuronal populations in macaque primary visual cortex , 2011, Nature Neuroscience.

[110]  Jeanny Herault Vision: Images, Signals and Neural Networks - Models of Neural Processing in Visual Perception , 2010 .

[111]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[112]  Chethan Pandarinath,et al.  Symmetry Breakdown in the ON and OFF Pathways of the Retina at Night: Functional Implications , 2010, The Journal of Neuroscience.

[113]  Christina Enroth-Cugell,et al.  Visual Adaptation and Retinal Gain , 2002 .