A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain.

[1]  William C. Smith,et al.  Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos , 1992, Cell.

[2]  Ruth Lehmann,et al.  Induction of germ cell formation by oskar , 1992, Nature.

[3]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[4]  R. Cohen,et al.  Evidence for a highly selective RNA transport system and its role in establishing the dorsoventral axis of the Drosophila egg. , 1992, Development.

[5]  D. Melton,et al.  Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. , 1992, Science.

[6]  C. Nüsslein-Volhard,et al.  The origin of pattern and polarity in the Drosophila embryo , 1992, Cell.

[7]  H. Lipshitz Axis specification in the Drosophila embryo. , 1991, Current opinion in cell biology.

[8]  G. Struhl,et al.  RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos , 1991, Cell.

[9]  V. Nagaraja,et al.  Com, the phage Mu mom translational activator, is a zinc-binding protein that binds specifically to its cognate mRNA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Douglas A. Melton,et al.  Injected Wnt RNA induces a complete body axis in Xenopus embryos , 1991, Cell.

[11]  R. Harland,et al.  Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center , 1991, Cell.

[12]  Ruth Lehmann,et al.  Nanos is the localized posterior determinant in Drosophila , 1991, Cell.

[13]  R. Lehmann,et al.  oskar organizes the germ plasm and directs localization of the posterior determinant nanos , 1991, Cell.

[14]  R. Lehmann,et al.  The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. , 1991, Development.

[15]  D. Melton,et al.  Pattern formation during animal development. , 1991, Science.

[16]  D. L. Weeks,et al.  The Xenopus localized messenger RNA An3 may encode an ATP-dependent RNA helicase , 1991, Nature.

[17]  C. Mitchelmore,et al.  Isolation of two cDNAs encoding zinc finger proteins which bind to the alpha 1-antitrypsin promoter and to the major histocompatibility complex class I enhancer , 1991, Nucleic Acids Res..

[18]  Y. Kobayakawa,et al.  A cytoplasmic determinant for dorsal axis formation in an early embryo of Xenopus laevis. , 1990, Development.

[19]  J. Vaughan,et al.  Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures , 1990, Cell.

[20]  P. Macdonald bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure. , 1990, Development.

[21]  Diethard Tautz,et al.  A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo , 1990, Nature.

[22]  K. Van Nimmen,et al.  Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A , 1990, Nature.

[23]  J. Berg,et al.  Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. , 1990, The Journal of biological chemistry.

[24]  E. Davidson,et al.  How embryos work: a comparative view of diverse modes of cell fate specification. , 1990, Development.

[25]  D. Melton,et al.  A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. , 1990, Development.

[26]  R. Steward Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function , 1989, Cell.

[27]  D. Melton,et al.  Localized synthesis of the Vg1 protein during early Xenopus development. , 1989, Development.

[28]  P. Pasceri,et al.  Two UV-sensitive targets in dorsoanterior specification of frog embryos. , 1989, Development.

[29]  J. Berg,et al.  A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Ruth Lehmann,et al.  The Drosophila posterior-group gene nanos functions by repressing hunchback activity , 1989, Nature.

[31]  M. Jamrich,et al.  Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis. , 1989, Development.

[32]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[33]  G. Struhl,et al.  Cis- acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos , 1988, Nature.

[34]  H. Sive,et al.  A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction. , 1988, Nucleic acids research.

[35]  M. L. King,et al.  Localized maternal mRNA related to transforming growth factor beta mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[37]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[38]  R. Lehmann,et al.  Determination of anteroposterior polarity in Drosophila. , 1987, Science.

[39]  D. L. Weeks,et al.  A maternal mRNA localized to the vegetal hemisphere in xenopus eggs codes for a growth factor related to TGF-β , 1987, Cell.

[40]  F. Fuller-Pace,et al.  Analysis of the genomic L RNA segment from lymphocytic choriomeningitis virus. , 1987, Virology.

[41]  T. Sugimura,et al.  Nucleotide sequence of a full-length cDNA for human fibroblast poly(ADP-ribose) polymerase. , 1987, Biochemical and biophysical research communications.

[42]  M. Kozak An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. , 1987, Nucleic acids research.

[43]  D. Melton Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes , 1987, Nature.

[44]  D. Melton,et al.  Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. , 1987, Development.

[45]  J C Smith,et al.  Vegetal pole cells and commitment to form endoderm in Xenopus laevis. , 1987, Developmental biology.

[46]  G. Struhl,et al.  A molecular gradient in early Drosophila embryos and its role in specifying the body pattern , 1986, Nature.

[47]  C. Nüsslein-Volhard,et al.  Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid , 1986, Nature.

[48]  Ruth Lehmann,et al.  Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in drosophila , 1986, Cell.

[49]  M. L. King,et al.  Regional distribution of maternal messenger RNA in the amphibian oocyte , 1985 .

[50]  F. Jurnak Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. , 1985, Science.

[51]  D. L. Weeks,et al.  Identification and cloning of localized maternal RNAs from xenopus eggs , 1985, Cell.

[52]  D. Melton,et al.  Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. , 1984, Nucleic acids research.

[53]  W. Klein,et al.  A gradient of poly(A)+ RNA sequences in Xenopus laevis eggs and embryos. , 1982, Developmental Biology.

[54]  P. G. Hartman,et al.  The structure of histone H1 and its location in chromatin , 1980, Nature.

[55]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Kimelman,et al.  Induction of dorsal and ventral mesoderm by ectopically expressed Xenopus basic fibroblast growth factor. , 1992, Development.

[57]  W. Jeffery Localized mRNA and the egg cytoskeleton. , 1989, International review of cytology.

[58]  J. Gerhart,et al.  Region-specific cell activities in amphibian gastrulation. , 1986, Annual review of cell biology.

[59]  W. Jeffery,et al.  Transient localizations of messenger RNA in Xenopus laevis oocytes. , 1982, Developmental biology.

[60]  P. Whitington,et al.  Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. , 1975, Journal of embryology and experimental morphology.

[61]  P. Nieuwkoop The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action. , 1973, Advances in morphogenesis.