Eigenvalue problems of rotor system with uncertain parameters

A general method for investigating the eigenvalue problems of a rotor system with uncertain parameters is presented in this paper. The recurrence perturbation formulas based on the Riccati transfer matrix method are derived and used for calculating the first- and secondorder perturbations of eigenvalues and their respective eigenvectors for the rotor system with uncertain parameters. In addition, these formulas can be used for investigating the independent, and repeated, as well as the complex eigenvalue problems. The general method is called the Riccati perturbation transfer matrix method (Riccati-PTMM). The formulas for calculating the mean value, variance, and covariance of the eigenvalues and eigenvectors of the rotor system with random parameters are also given. Riccati-PTMM is used for calculating the random eigenvalues of a simply supported Timoshenko beam and a test rotor supported by two oil bearings. The results show that the method is accurate and efficient.

[1]  W. Bickford An improved computational technique for perturbations of the generalized symmetric linear algebraic eigenvalue problem , 1987 .

[2]  M. Dimentberg Vibration of a rotating shaft with randomly varying internal damping , 2005 .

[3]  B. K. Wada,et al.  Matrix Perturbation for Structural Dynamic Analysis , 1976 .

[4]  R. Lane Dailey,et al.  Eigenvector derivatives with repeated eigenvalues , 1989 .

[5]  W. Gao,et al.  Natural frequency and mode shape analysis of structures with uncertainty , 2007 .

[6]  Edward J. Haug,et al.  Design Sensitivity Analysis in Structural Mechanics.II. Eigenvalue Variations , 1980 .

[7]  An-Chen Lee,et al.  A Modified Transfer Matrix Method for Asymmetric Rotor-Bearing Systems , 1994 .

[8]  Wei Gao,et al.  Seismic random vibration analysis of shear beams with random structural parameters , 2010 .

[9]  Jer-Nan Juang,et al.  Eigenvector derivatives of repeated eigenvalues using singular value decomposition , 1989 .

[10]  Oh Sung Jun,et al.  Influence coefficients on rotor having thick shaft elements and resilient bearings , 2004 .

[11]  Sean P. Kenny,et al.  Eigenvalue and Eigenvector Approximate Analysis for Repeated Eigenvalue Problems , 1992 .

[12]  N. Sanchez,et al.  A view to the new perturbation technique valid for large parameters , 2005 .

[13]  A. Naess,et al.  Coherence function of transverse random vibrations of a rotating shaft , 2006 .

[14]  M. F. Dimentberg,et al.  Transverse vibrations of rotating shafts: Probability density and first-passage time of whirl radius , 2005 .

[15]  L. C. Rogers Derivatives of eigenvalues and eigenvectors , 1970 .

[16]  B. Wang,et al.  Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics , 1991 .

[17]  N. O. Myklestad A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams , 2012 .

[18]  Richard B. Nelson,et al.  Simplified calculation of eigenvector derivatives , 1976 .

[19]  Bangchun Wen,et al.  Uncertain Responses of Rotor-Stator Systems with Rubbing , 2003 .

[20]  J. Tinsley Oden,et al.  Research directions in computational mechanics , 2003 .

[21]  An-Chen Lee,et al.  A modified transfer matrix method for the coupling lateral and torsional vibrations of symmetric rotor-bearing systems , 2006 .

[22]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[23]  Jinsiang Shaw,et al.  Modal sensitivities for repeated eigenvalues and eigenvalue derivatives , 1992 .

[24]  W. C. Mills-Curran,et al.  CALCULATION OF EIGENVECTOR DERIVATIVES FOR STRUCTURES WITH REPEATED EIGENVALUES , 1988 .

[25]  Garnett C. Horner,et al.  The Riccati Transfer Matrix Method , 1978 .