Collective dynamics of atoms embedded into negative index materials

The dynamics of two two-level atoms embedded near to the interface of paired metamaterial slabs, one of negative permeability and the other of negative permittivity are studied. The interface behaves as a plasmonic waveguide composed of surface-plasmon polariton modes. It is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasma field to the atoms. In the case of the resonant coupling, the plasma field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms are completely equivalent to those of a four-atom system. Moreover, two threshold coupling strengths exist, one corresponding to the strength of coupling of the plasma field to the symmetric and the other to the antisymmetric modes of the system. The thresholds distinguish between the non-Markovian and Markovian regimes of the evolutions. The solutions predict a large and long living entanglement mediated by the plasma field in both Markovian and non-Markovian regimes of the evolution. We also show that a simultaneous Markovian and non-Markovian regimes of the evolution may occur in which the memory effects exist over a finite evolution time. Keywords: met

[1]  Spontaneous emission in a planar Fabry-Pérot microcavity. , 1996 .

[2]  Second order coupling between excited atoms and surface polaritons , 2012, 1206.6621.

[3]  Mario Sorolla,et al.  Negative refraction through an extraordinary transmission left-handed metamaterial slab , 2009 .

[4]  S. Buhmann,et al.  Dispersion forces in macroscopic quantum electrodynamics , 2006, quant-ph/0608118.

[5]  S.Scheel,et al.  Spontaneous decay of an excited atom in an absorbing dielectric , 1999, quant-ph/9904015.

[6]  A. L. Bradley,et al.  Spontaneous Emission and Energy Transfer Rates Near a Coated Metallic Cylinder , 2014 .

[7]  Zhong-Xiao Man,et al.  Non-Markovian dynamics of a two-level system in the presence of hierarchical environments. , 2015, Optics express.

[8]  Ido Dolev,et al.  Surface-plasmon holographic beam shaping. , 2012, Physical review letters.

[9]  Zbigniew Ficek,et al.  Continuous Variables Approach to Entanglement Creation and Processing , 2010 .

[10]  David R. Smith,et al.  Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial , 2001 .

[11]  Wenshan Cai,et al.  A negative permeability material at red light. , 2007, Optics express.

[12]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[13]  W. Lukosz,et al.  Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers , 1980 .

[14]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[15]  Tomas,et al.  Green function for multilayers: Light scattering in planar cavities. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  F. García-Vidal,et al.  Theory of strong coupling between quantum emitters and propagating surface plasmons. , 2012, Physical review letters.

[17]  Hong Chen,et al.  Experimental study of photonic crystals consisting of E-negative and mu-negative materials. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Rosario Lo Franco,et al.  Harnessing non-Markovian quantum memory by environmental coupling , 2015, 1506.08293.

[19]  R. Lehmberg Radiation from an N-Atom System. II. Spontaneous Emission from a Pair of Atoms , 1970 .

[20]  Gao-xiang Li,et al.  Collective dynamics and entanglement of two distant atoms embedded into single-negative index material. , 2016, Optics express.

[21]  S. Scheel,et al.  Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber , 2015, 1505.01275.

[22]  M. S. Zubairy,et al.  Entanglement generation between two atoms via surface modes , 2011 .

[23]  Aeneas Wiener,et al.  Surface plasmons and nonlocality: a simple model. , 2013, Physical review letters.

[24]  Nader Engheta,et al.  Supercoupling of surface waves withε-near-zero metastructures , 2014 .

[25]  M Bergmair,et al.  Single and multilayer metamaterials fabricated by nanoimprint lithography , 2011, Nanotechnology.

[26]  R Ruppin,et al.  Surface polaritons of a left-handed material slab , 2001 .

[27]  Barnett,et al.  Spontaneous emission in absorbing dielectric media. , 1992, Physical review letters.

[28]  Qiang Cheng,et al.  Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials. , 2012, Physical review letters.

[29]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[30]  Electromagnetic-field quantization and spontaneous decay in left-handed media , 2003, quant-ph/0306028.

[31]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[32]  R. Ruppin,et al.  Surface polaritons of a left-handed medium , 2000 .

[33]  K. C. Liu Spontaneous emission by two atoms with different resonance frequencies near a metal surface. II , 1986, Physical review. B, Condensed matter.

[34]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[35]  M. Fleischhauer,et al.  Quantum emitters coupled to surface plasmons of a nanowire: A Green's function approach , 2010, 1002.1419.

[36]  S. Scheel,et al.  Atomic multipole relaxation rates near surfaces , 2009, 0901.3084.

[37]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[38]  R. Boyd,et al.  Self-phase-modulation of surface plasmon polaritons , 2014 .

[39]  Leonid Krivitsky,et al.  Demonstration of quadrature squeezed surface-plasmons in a gold waveguide , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[40]  H. J. Kimble,et al.  Atom–atom interactions around the band edge of a photonic crystal waveguide , 2016, Proceedings of the National Academy of Sciences.

[41]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[42]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[43]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[44]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[45]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[46]  E. Economou Surface Plasmons in Thin Films , 1969 .

[47]  Tomas Ms,et al.  Green function for multilayers: Light scattering in planar cavities. , 1995 .

[48]  P. Huidobro,et al.  Superradiance mediated by graphene surface plasmons , 2012, 1201.6492.

[49]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[50]  Francesco Petruccione,et al.  Non-Markovian dynamics in pulsed- and continuous-wave atom lasers , 1999, quant-ph/9906119.

[51]  F. García-Vidal,et al.  Reversible dynamics of single quantum emitters near metal-dielectric interfaces , 2014, 1401.6193.

[52]  C. Keitel,et al.  Spontaneous emission interference in negative-refractive-index waveguides , 2009, 0902.2890.

[53]  M. Paternostro,et al.  Competition between memory-keeping and memory-erasing decoherence channels , 2013, 1311.2045.

[54]  Jeff F. Young,et al.  Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle , 2013, 1304.6045.

[55]  Jean-Jacques Greffet,et al.  Surface plasmon Fourier optics , 2009, 0902.1926.

[56]  J. Sipe,et al.  Quantum electrodynamics near an interface , 1984 .

[57]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[58]  Francesco Petruccione,et al.  Concepts and Methods in the Theory of Open Quantum Systems , 2003, quant-ph/0302047.

[59]  Pradeep Kumar,et al.  Plasma oscillation of a charge layer at an insulator surface , 1976 .

[60]  A. Bouhelier,et al.  Coupling of a dipolar emitter into one-dimensional surface plasmon , 2013, Scientific Reports.

[61]  Y. P. Lee,et al.  Single- and double-negative refractive indices of combined metamaterial structure , 2009 .

[62]  J. Xu,et al.  Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials , 2014 .

[63]  R. Depine,et al.  Radiation characteristics of electromagnetic eigenmodes at the corrugated interface of a left-handed material. , 2009, Physical review letters.