A machine learning approach for filtering Monte Carlo noise

The most successful approaches for filtering Monte Carlo noise use feature-based filters (e.g., cross-bilateral and cross non-local means filters) that exploit additional scene features such as world positions and shading normals. However, their main challenge is finding the optimal weights for each feature in the filter to reduce noise but preserve scene detail. In this paper, we observe there is a complex relationship between the noisy scene data and the ideal filter parameters, and propose to learn this relationship using a nonlinear regression model. To do this, we use a multilayer perceptron neural network and combine it with a matching filter during both training and testing. To use our framework, we first train it in an offline process on a set of noisy images of scenes with a variety of distributed effects. Then at run-time, the trained network can be used to drive the filter parameters for new scenes to produce filtered images that approximate the ground truth. We demonstrate that our trained network can generate filtered images in only a few seconds that are superior to previous approaches on a wide range of distributed effects such as depth of field, motion blur, area lighting, glossy reflections, and global illumination.

[1]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[2]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[3]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[4]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[5]  R. Redner,et al.  A note on the use of nonlinear filtering in computer graphics , 1990, IEEE Computer Graphics and Applications.

[6]  Peter Shirley,et al.  Discrepancy as a Quality Measure for Sample Distributions , 1991, Eurographics.

[7]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[8]  Holly E. Rushmeier,et al.  Energy preserving non-linear filters , 1994, SIGGRAPH.

[9]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[10]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[11]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[12]  Geoffrey E. Hinton,et al.  NeuroAnimator: fast neural network emulation and control of physics-based models , 1998, SIGGRAPH.

[13]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[14]  Michael D. McCool,et al.  Anisotropic diffusion for Monte Carlo noise reduction , 1999, TOGS.

[15]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[16]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[17]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[18]  Donald P. Greenberg,et al.  Combining edges and points for interactive high-quality rendering , 2003, ACM Trans. Graph..

[19]  R. Ramamoorthi,et al.  Efficient BRDF importance sampling using a factored representation , 2004, ACM Trans. Graph..

[20]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[21]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[22]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[23]  Ruifeng Xu,et al.  A novel Monte Carlo noise reduction operator , 2005, IEEE Computer Graphics and Applications.

[24]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[25]  Philippe Bekaert,et al.  Advanced Global Illumination, Second Edition , 2006 .

[26]  Bernard Péroche,et al.  Non-interleaved deferred shading of interleaved sample patterns , 2006, GH '06.

[27]  Jaakko Lehtinen,et al.  Incremental Instant Radiosity for Real-Time Indirect Illumination , 2007, Rendering Techniques.

[28]  Matthias Zwicker,et al.  Multidimensional adaptive sampling and reconstruction for ray tracing , 2008, ACM Trans. Graph..

[29]  Frédo Durand,et al.  Frequency analysis and sheared reconstruction for rendering motion blur , 2009, ACM Trans. Graph..

[30]  R. Ramamoorthi,et al.  Adaptive wavelet rendering , 2009, SIGGRAPH 2009.

[31]  Derek Nowrouzezahrai,et al.  Shadowing Dynamic Scenes with Arbitrary BRDFs , 2009, Comput. Graph. Forum.

[32]  Greg Humphreys,et al.  Physically Based Rendering, Second Edition: From Theory To Implementation , 2010 .

[33]  Hendrik P. A. Lensch,et al.  Edge-avoiding À-Trous wavelet transform for fast global illumination filtering , 2010, HPG '10.

[34]  F. Durand,et al.  Temporal light field reconstruction for rendering distribution effects , 2011, ACM Trans. Graph..

[35]  Pradeep Sen,et al.  Implementation of Random Parameter Filtering , 2011 .

[36]  Frédo Durand,et al.  Practical filtering for efficient ray-traced directional occlusion , 2011, ACM Trans. Graph..

[37]  Marcus A. Magnor,et al.  Eurographics Symposium on Rendering 2011 Guided Image Filtering for Interactive High-quality Global Illumination , 2022 .

[38]  ZwickerMatthias,et al.  Adaptive sampling and reconstruction using greedy error minimization , 2011 .

[39]  DurandFrédo,et al.  Practical filtering for efficient ray-traced directional occlusion , 2011 .

[40]  Jun-Hai Yong,et al.  Efficient Depth‐of‐Field Rendering with Adaptive Sampling and Multiscale Reconstruction , 2011, Comput. Graph. Forum.

[41]  Carsten Dachsbacher,et al.  Analyzing Visibility Configurations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[42]  Matthias Zwicker,et al.  Adaptive sampling and reconstruction using greedy error minimization , 2011, ACM Trans. Graph..

[43]  Timo Aila,et al.  A local image reconstruction algorithm for stochastic rendering , 2011, SI3D.

[44]  Wenzel Jakob,et al.  Progressive Expectation‐Maximization for Hierarchical Volumetric Photon Mapping , 2011, EGSR '11.

[45]  Frédo Durand,et al.  Frequency analysis and sheared filtering for shadow light fields of complex occluders , 2011, TOGS.

[46]  Stefan Harmeling,et al.  Image denoising: Can plain neural networks compete with BM3D? , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Yung-Yu Chuang,et al.  SURE-based optimization for adaptive sampling and reconstruction , 2012, ACM Trans. Graph..

[48]  Ravi Ramamoorthi,et al.  Axis-aligned filtering for interactive sampled soft shadows , 2012, ACM Trans. Graph..

[49]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[50]  Matthias Zwicker,et al.  Adaptive rendering with non-local means filtering , 2012, ACM Trans. Graph..

[51]  Soheil Darabi,et al.  On filtering the noise from the random parameters in Monte Carlo rendering , 2012, TOGS.

[52]  Stephen Lin,et al.  Global illumination with radiance regression functions , 2013, ACM Trans. Graph..

[53]  Matthias Zwicker,et al.  Robust Denoising using Feature and Color Information , 2013, Comput. Graph. Forum.

[54]  Pradeep Sen,et al.  Removing the Noise in Monte Carlo Rendering with General Image Denoising Algorithms , 2013, Comput. Graph. Forum.

[55]  Frédo Durand,et al.  Axis-aligned filtering for interactive physically-based diffuse indirect lighting , 2013, ACM Trans. Graph..

[56]  Jean-Michel Morel,et al.  Boosting monte carlo rendering by ray histogram fusion , 2014, ACM Trans. Graph..

[57]  Bochang Moon,et al.  Adaptive Rendering Based on Weighted Local Regression , 2014, ACM Trans. Graph..

[58]  Frédo Durand,et al.  Factored axis-aligned filtering for rendering multiple distribution effects , 2014, ACM Trans. Graph..