Specular sets

[1]  Dominique Perrin,et al.  Neutral and tree sets of arbitrary characteristic , 2017, Theor. Comput. Sci..

[2]  L. Bartholdi Growth of groups and wreath products , 2015, 1512.07044.

[3]  Dominique Perrin,et al.  Enumeration Formulæ in Neutral Sets , 2015, DLT.

[4]  FRANCESCO DOLCE,et al.  Return words of linear involutions and fundamental groups , 2015, Ergodic Theory and Dynamical Systems.

[5]  Dominique Perrin,et al.  Maximal bifix decoding , 2013, Discret. Math..

[6]  Christophe Reutenauer,et al.  Acyclic, connected and tree sets , 2013, Monatshefte für Mathematik.

[7]  SAMEER KAILASA,et al.  TOPICS IN GEOMETRIC GROUP THEORY , 2015 .

[8]  Edita Pelantová,et al.  Palindromic richness for languages invariant under more symmetries , 2011, Theor. Comput. Sci..

[9]  Dominique Perrin,et al.  The finite index basis property , 2013, 1305.0127.

[10]  Philippe Narbel,et al.  Lamination languages , 2012, Ergodic Theory and Dynamical Systems.

[11]  B. Pires,et al.  Orbit structure of interval exchange transformations with flip , 2011, 1104.2015.

[12]  Jean Berstel,et al.  Bifix codes and Sturmian words , 2010, ArXiv.

[13]  M. Rigo,et al.  Combinatorics, Automata and Number Theory , 2010 .

[14]  Dominique Perrin,et al.  Codes and Automata , 2009, Encyclopedia of mathematics and its applications.

[15]  Luca Q. Zamboni,et al.  Palindromic richness , 2008, Eur. J. Comb..

[16]  Erwan Lanneau,et al.  Dynamics and geometry of the Rauzy–Veech induction for quadratic differentials , 2007, Ergodic Theory and Dynamical Systems.

[17]  M. Lustig,et al.  ℝ‐trees and laminations for free groups I: algebraic laminations , 2006, math/0609416.

[18]  M. Lustig,et al.  $\R$-trees and laminations for free groups III: Currents and dual $\R$-tree metrics , 2008 .

[19]  Z. Masáková,et al.  Factor versus palindromic complexity of uniformly recurrent infinite words , 2006, Theor. Comput. Sci..

[20]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[21]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[22]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[23]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[24]  Julien Cassaigne,et al.  Complexité et facteurs spéciaux , 1997 .

[25]  Arnaldo Nogueira,et al.  Measured foliations on nonorientable surfaces , 1990 .

[26]  A. Nogueira Almost all interval exchange transformations with flips are nonergodic , 1989, Ergodic Theory and Dynamical Systems.

[27]  David E. Muller,et al.  Groups, the Theory of Ends, and Context-Free Languages , 1983, J. Comput. Syst. Sci..

[28]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[29]  M. Keane Interval exchange transformations , 1975 .