Applications of the Google Earth Engine and Phenology-Based Threshold Classification Method for Mapping Forest Cover and Carbon Stock Changes in Siem Reap Province, Cambodia

[1]  P. Leitão,et al.  Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna , 2018, Carbon Balance and Management.

[2]  Jane Southworth,et al.  Tourism, forest conversion, and land transformations in the Angkor basin, Cambodia , 2009 .

[3]  Muhammad Jehanzeb Masud Cheema,et al.  Land use and land cover classification using phenological variability from MODIS vegetation in the Upper Pangani River Basin, Eastern Africa , 2013 .

[4]  Andrew J. Lowe,et al.  Assessment of carbon stocks of semi-evergreen forests in Cambodia , 2016 .

[5]  Peter M. Atkinson,et al.  Characterising the land surface phenology of Africa using 500 m MODIS EVI , 2018 .

[6]  Andrew J. Lowe,et al.  Forest reference emission level and carbon sequestration in Cambodia , 2016 .

[7]  Meng Zhang,et al.  Object-based rice mapping using time-series and phenological data , 2019, Advances in Space Research.

[8]  Li Li,et al.  Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images , 2015, Remote. Sens..

[9]  Christelle Vancutsem,et al.  Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen Rain Forests: A Test Case in Continental Southeast Asia , 2018, Remote. Sens..

[10]  David Helman,et al.  Land surface phenology: What do we really 'see' from space? , 2018, Science of the Total Environment.

[11]  A. Huete,et al.  Development of a two-band enhanced vegetation index without a blue band , 2008 .

[12]  Russell G. Congalton,et al.  Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine , 2017, Remote. Sens..

[13]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[14]  Hugh Eva,et al.  First Results From the Phenology-Based Synthesis Classifier Using Landsat 8 Imagery , 2015, IEEE Geoscience and Remote Sensing Letters.

[15]  R. DeFries,et al.  A Contemporary Assessment of Change in Humid Tropical Forests , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[16]  Abineh Tilahun,et al.  Accuracy Assessment of Land Use Land Cover Classification using Google Earth , 2015 .

[17]  Jie Wang,et al.  Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[18]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[19]  Roberto Colombo,et al.  Remote Sensing-Based Assessment of the 2005-2011 Bamboo Reproductive Event in the Arakan Mountain Range and Its Relation with Wildfires , 2017, Remote. Sens..

[20]  R. Hobbs,et al.  Opportunities and Challenges for Ecological Restoration within REDD+ , 2011 .

[21]  Nitin K. Tripathi,et al.  Determination of Vegetation Thresholds for Assessing Land Use and Land Use Changes in Cambodia using the Google Earth Engine Cloud-Computing Platform , 2019, Remote. Sens..

[22]  Stefano Ricci,et al.  Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation , 2016, Remote. Sens..

[24]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[25]  P. D’Odorico,et al.  Accelerated deforestation driven by large-scale land acquisitions in Cambodia , 2015 .

[26]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[27]  N. Sasaki,et al.  Assessment of Drivers of Deforestation and Forest Degradation in Phnom Tbeng Forest Based on Socio-Economic Surveys , 2014 .

[28]  Lei Shi,et al.  Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine , 2018, Remote. Sens..

[29]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[30]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[31]  David T. Potere,et al.  Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive , 2008, Sensors.

[32]  Bing Zhang,et al.  A Review of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information , 2014 .

[33]  Giles M. Foody,et al.  Good practices for estimating area and assessing accuracy of land change , 2014 .

[34]  A. Shamseldin,et al.  Land Use Change Detection and Prediction in Upper Siem Reap River, Cambodia , 2019, Hydrology.

[35]  A. Rosenqvist,et al.  Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+ , 2017, Carbon Balance and Management.

[36]  Zheng Zhang,et al.  Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data , 2015, Remote. Sens..

[37]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[38]  Valerie A. Thomas,et al.  Fitting the Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem in Remote Sensing Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Edzer Pebesma,et al.  Using Google Earth Engine to detect land cover change: Singapore as a use case , 2018 .

[40]  Geoffrey J. Hay,et al.  Object-based change detection , 2012 .

[41]  C. B. Lantican,et al.  Assessing change in national forest monitoring capacities of 99 tropical countries , 2015 .

[42]  J. J. Kendawang,et al.  Changes in above- and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia. , 2010 .

[43]  Pete Smith,et al.  The FAOSTAT database of greenhouse gas emissions from agriculture , 2013 .

[44]  Weili Kou,et al.  Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery , 2017 .

[45]  Alice C Hughes,et al.  Understanding the drivers of Southeast Asian biodiversity loss , 2017 .

[46]  Hiroshi Ninomiya,et al.  Reducing Carbon Emissions through Improved Forest Management in Cambodia , 2013 .

[47]  F. Putz,et al.  Sustainable Management of Tropical Forests Can Reduce Carbon Emissions and Stabilize Timber Production , 2016, Front. Environ. Sci..

[48]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[49]  N. Sasaki,et al.  REDD Development in Cambodia— Potential Carbon Emission Reductions in a REDD Project , 2011 .

[50]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .