Towards the Next Level of Bioinspired Dry Adhesives: New Designs and Applications

This Feature Article aims to highlight our recent efforts to develop more robust gecko-inspired dry adhesives and their applications. Due to recent progress in micro- and nanofabrication techniques, it is possible to fabricate highly sophisticated multiscale, hierarchical structures using various polymer materials. In addition, the adhesion strength of synthetic dry adhesives has been shown to be similar to or exceed that of real gecko foot-hair by several times. Therefore, it is timely and appropriate to drive the research of gecko-inspired dry adhesives into a new epoch by investigating more robust dry adhesive structures, efficient detachment mechanisms, and new applications. In this Feature Article, we present a series of our recent achievements to overcome some of the limitations of gecko-like hair structures such as rough surface adaptation, durability, and controlled geometry, with particular emphasis on materials issues and detachment mechanism. For potential applications, a clean transportation device and a biomedical skin patch are briefly described to expand the application realm from the well-known wall climbing robot.

[1]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[2]  Carlo Menon,et al.  A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives , 2009 .

[3]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Shravanthi T. Reddy,et al.  Bioinspired Surfaces with Switchable Adhesion , 2007 .

[5]  Eduard Arzt,et al.  Gecko‐Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives , 2010, Advanced materials.

[6]  Eduard Arzt,et al.  Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  Moon Kyu Kwak,et al.  Stretchable, adhesion-tunable dry adhesive by surface wrinkling. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[8]  Kahp Y. Suh,et al.  Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives , 2009 .

[9]  Victor Samper,et al.  Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template , 2007 .

[10]  Mark R. Cutkosky,et al.  Smooth Vertical Surface Climbing With Directional Adhesion , 2008, IEEE Transactions on Robotics.

[11]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[12]  Kahp Y. Suh,et al.  Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion , 2010 .

[13]  K. Suh,et al.  A nontransferring dry adhesive with hierarchical polymer nanohairs , 2009, Proceedings of the National Academy of Sciences.

[14]  Metin Sitti,et al.  Adhesion of biologically inspired vertical and angled polymer microfiber arrays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  Kahp Y. Suh,et al.  Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition , 2009 .

[16]  Kahp Y Suh,et al.  Nanoengineered multiscale hierarchical structures with tailored wetting properties. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[17]  R S Fearing,et al.  High friction from a stiff polymer using microfiber arrays. , 2006, Physical review letters.

[18]  Wan Kyun Chung,et al.  Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem , 2008, IEEE Transactions on Robotics.

[19]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Kahp Y. Suh,et al.  Stretched polymer nanohairs by nanodrawing. , 2006 .

[21]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[22]  C Majidi,et al.  Effective elastic modulus of isolated gecko setal arrays , 2006, Journal of Experimental Biology.

[23]  Bharat Bhushan,et al.  Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface , 2007 .

[24]  Metin Sitti,et al.  Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[25]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.

[26]  Mark R. Cutkosky,et al.  Directional adhesion for climbing: theoretical and practical considerations , 2007 .

[27]  Eduard Arzt,et al.  Hierarchical Gecko‐Like Adhesives , 2009 .

[28]  Metin Sitti,et al.  Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. , 2009, ACS applied materials & interfaces.

[29]  I. Rodríguez,et al.  Controlled Fabrication of Multitiered Three‐Dimensional Nanostructures in Porous Alumina , 2008 .

[30]  A. Vaziri,et al.  Tilted Janus polymer pillars , 2010 .

[31]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[32]  Strong friction of silicon carbide nanowire films. , 2009, Nanotechnology.

[33]  J. P. Sargent,et al.  A practical approach to the development of a synthetic Gecko tape , 2009 .

[34]  Rhokyun Kwak,et al.  Solvent‐Assisted Decal Transfer Lithography by Oxygen‐Plasma Bonding and Anisotropic Swelling , 2010, Advanced materials.

[35]  J. M. Bush,et al.  The hydrodynamics of water strider locomotion , 2003, Nature.

[36]  Kahp Y Suh,et al.  Shape-tunable polymer nanofibrillar structures by oblique electron beam irradiation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[37]  Eduard Arzt,et al.  Contact shape controls adhesion of bioinspired fibrillar surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[38]  R. Fearing,et al.  Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[39]  Alfred J. Crosby,et al.  Surface Wrinkles for Smart Adhesion , 2008 .

[40]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[41]  Kahp Y. Suh,et al.  Stooped Nanohairs: Geometry‐Controllable, Unidirectional, Reversible, and Robust Gecko‐like Dry Adhesive , 2009 .

[42]  K. Suh,et al.  Fabrication of monolithic bridge structures by vacuum-assisted capillary-force lithography. , 2009, Small.

[43]  Marleen Kamperman,et al.  Functional Adhesive Surfaces with “Gecko” Effect: The Concept of Contact Splitting , 2010 .

[44]  Metin Sitti,et al.  Reversible dry micro-fibrillar adhesives with thermally controllable adhesion , 2009 .

[45]  Lei Jiang,et al.  Definition of Superhydrophobic States , 2007 .

[46]  A. Jagota,et al.  Strongly enhanced static friction using a film-terminated fibrillar interface. , 2008, Soft matter.

[47]  K. Char,et al.  Face selection in one-step bending of Janus nanopillars. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[48]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[49]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[50]  Jae-Seob Kwak,et al.  A review of adhesion and friction models for gecko feet , 2010 .

[51]  A. Khademhosseini,et al.  UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: From lotus leaf to gecko foot hairs. , 2009, Nanoscale.

[52]  Carlo Menon,et al.  Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives , 2010 .

[53]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[54]  Shu Yang,et al.  Adhesion Selectivity Using Rippled Surfaces , 2011 .

[55]  T. Xie,et al.  Self-Peeling Reversible Dry Adhesive System , 2008 .

[56]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[57]  I. Rodríguez,et al.  Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. , 2011, ACS nano.