ACOUSTIC FEATURE ANALYSIS FOR ROBUST SPEECH RECOGNITION

[1]  Mei-Yuh Hwang,et al.  A comparative study of discrete, semicontinuous, and continuous hidden Markov models , 1993, Comput. Speech Lang..

[2]  Wayne H. Ward,et al.  Speech recognition , 1997 .

[3]  L. Baum,et al.  An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .

[4]  Hans-Günter Hirsch,et al.  Improved speech recognition using high-pass filtering of subband envelopes , 1991, EUROSPEECH.

[5]  Hermann Ney,et al.  Improvements in beam search for 10000-word continuous-speech recognition , 1994, IEEE Trans. Speech Audio Process..

[6]  Sadaoki Furui,et al.  Speaker-independent isolated word recognition using dynamic features of speech spectrum , 1986, IEEE Trans. Acoust. Speech Signal Process..

[7]  John Makhoul,et al.  Comparative experiments on large vocabulary speech recognition , 1993 .

[8]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[9]  Lalit R. Bahl,et al.  A Maximum Likelihood Approach to Continuous Speech Recognition , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  John Makhoul,et al.  LPCW: An LPC vocoder with linear predictive spectral warping , 1976, ICASSP.

[11]  John E. Markel,et al.  Linear Prediction of Speech , 1976, Communication and Cybernetics.

[12]  John Holdsworth,et al.  A comparison of preprocessors for the cambridge recurrent error propagation network speech recognition system , 1990, ICSLP.

[13]  Hynek Hermansky,et al.  RASTA processing of speech , 1994, IEEE Trans. Speech Audio Process..

[14]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[15]  L. Rabiner,et al.  System for automatic formant analysis of voiced speech. , 1970, The Journal of the Acoustical Society of America.

[16]  B. Atal,et al.  Speech analysis and synthesis by linear prediction of the speech wave. , 1971, The Journal of the Acoustical Society of America.

[17]  Stan Davis,et al.  Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Se , 1980 .

[18]  Brian Hanson,et al.  Regression features for recognition of speech in quiet and in noise , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[19]  S.E. Levinson,et al.  Structural methods in automatic speech recognition , 1985, Proceedings of the IEEE.

[20]  H Hermansky,et al.  Perceptual linear predictive (PLP) analysis of speech. , 1990, The Journal of the Acoustical Society of America.

[21]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[22]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[23]  J. Baker,et al.  The DRAGON system--An overview , 1975 .

[24]  Frédéric Bimbot,et al.  Language modeling by variable length sequences: theoretical formulation and evaluation of multigrams , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[25]  A. Oppenheim Speech analysis-synthesis system based on homomorphic filtering. , 1969, The Journal of the Acoustical Society of America.

[26]  Vassilios Digalakis,et al.  Genones: generalized mixture tying in continuous hidden Markov model-based speech recognizers , 1996, IEEE Trans. Speech Audio Process..

[27]  F. Jelinek,et al.  Continuous speech recognition by statistical methods , 1976, Proceedings of the IEEE.

[28]  Mei-Yuh Hwang,et al.  Shared-distribution hidden Markov models for speech recognition , 1993, IEEE Trans. Speech Audio Process..

[29]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[30]  Steve Young,et al.  A review of large-vocabulary continuous-speech recognition , 1996 .