Experimental realization of counterfactual quantum cryptography

In counterfactual quantum key distribution (CQKD) information is transferred, in a secure way, between Alice and Bob even when no particle carrying the information is in fact transmitted between them. In this letter we fully implement the scheme for CQKD proposed in [1], demonstrating for the first time that information can be transmitted between two parties without the transmission of a carrier.

[1]  Yong-Su Kim,et al.  Effects of depolarizing quantum channels on BB84 and SARG04 quantum cryptography protocols , 2010, 1002.2285.

[2]  Richard J. Hughes,et al.  Practical long-distance quantum key distribution system using decoy levels , 2008, 0806.3085.

[3]  Hiroki Takesue,et al.  100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. , 2006, Optics express.

[4]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[5]  Alessio Avella,et al.  Experimental quantum-cryptography scheme based on orthogonal states , 2010 .

[6]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[7]  M. Wahiddin,et al.  Quantum key distribution in terms of the Greenberger-Horne-Zeilinger state: Multi-key generation , 2009, 0907.4912.

[8]  Gregor Weihs,et al.  Quantum entanglement distribution with 810 nm photons through telecom fibers , 2010 .

[9]  Yoon-Ho Kim,et al.  Implementation of polarization-coded free-space BB84 quantum key distribution , 2008 .

[10]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[11]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[12]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2005, Physical review letters.

[13]  Copying of quantum information by means of a quantum amplifier , 2006 .

[14]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[15]  J. Dynes,et al.  Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. , 2008, Optics express.

[16]  Zheng-Fu Han,et al.  Security of counterfactual quantum cryptography , 2010, 1007.3066.

[17]  Marco Barbieri,et al.  Nondeterministic noiseless amplification of optical signals: a review of recent experiments , 2011 .

[18]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[19]  G. Giovanelli,et al.  QUANTUM BIT ERROR RATE IN MODELED ATMOSPHERES , 2008, 0808.1265.

[20]  L. Vaidman,et al.  Quantum mechanical interaction-free measurements , 1993, hep-th/9305002.

[21]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[22]  Goldenberg,et al.  Quantum cryptography based on orthogonal states. , 1995, Physical review letters.

[23]  A. M. Colla,et al.  Quantum dense key distribution , 2004 .

[24]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.

[25]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[26]  C. G. Peterson,et al.  Long-distance quantum key distribution in optical fibre , 2006, quant-ph/0607177.

[27]  J. P. von der Weid,et al.  Stable single-photon interference in a 1 km fiber-optic Mach-Zehnder interferometer with continuous phase adjustment. , 2011, Optics letters.

[28]  J. P. von der Weid,et al.  Polarisation drift compensation in 8 km-long Mach-Zehnder fibre-optical interferometer for quantum communication , 2011 .

[29]  M. Genovese Research on hidden variable theories: A review of recent progresses , 2005, quant-ph/0701071.

[30]  S. N. Molotkov,et al.  Robustness of quantum cryptography: SARG04 key-distribution protocol , 2009 .

[31]  Gaby Lenhart,et al.  Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD , 2009 .

[32]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[33]  Min Ren,et al.  Experimental demonstration of counterfactual quantum key distribution , 2010, 1003.4621.

[34]  P. Villoresi,et al.  Feasibility of satellite quantum key distribution , 2009, 0903.2160.

[35]  Ying Sun,et al.  Counterfactual quantum key distribution with high efficiency , 2010 .

[36]  G. Brida,et al.  Twin-photon techniques for photo-detector calibration , 2005, quant-ph/0505227.

[37]  G Brida,et al.  Experimental realization of a low-noise heralded single-photon source. , 2010, Optics express.

[38]  David J. Wineland,et al.  Quantum information processing and metrology with trapped ions , 2011 .

[39]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[40]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[41]  W. Vogel,et al.  Quantum light in the turbulent atmosphere , 2009, 0902.4187.

[42]  B. Baek,et al.  Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. , 2008, Optics express.

[43]  Marco Lucamarini,et al.  Experimental test of two-way quantum key distribution in the presence of controlled noise. , 2006, Physical review letters.

[44]  Herzog,et al.  Interaction-free measurement. , 1995, Physical review letters.

[45]  Vaidman,et al.  Goldenberg and Vaidman Reply. , 1996, Physical review letters.

[46]  C. Ross Found , 1869, The Dental register.