Enumeration of MOLS of small order
暂无分享,去创建一个
[1] J. Dénes,et al. Latin squares and their applications , 1974 .
[2] H. W. Norton. THE 7 × 7 SQUARES , 1939 .
[3] David A. Drake,et al. Maximal sets of Latin squares and partial transversals , 1977 .
[4] C. Colbourn,et al. Handbook of Combinatorial Designs , 2006 .
[5] David A. Drake,et al. The Non-Existence of Maximal Sets of Four Mutually Orthogonal Latin Squares of Order 8 , 2004, Des. Codes Cryptogr..
[6] Ian M. Wanless,et al. On the Number of Latin Squares , 2005, 0909.2101.
[7] Anthony B. Evans. Latin Squares without Orthogonal Mates , 2006, Des. Codes Cryptogr..
[8] Mike J. Grannell,et al. On the number of transversal designs , 2013, J. Comb. Theory A.
[9] P. J. Owens,et al. Complete Sets of Pairwise Orthogonal Latin Squares and the Corresponding Projective Planes , 1992, J. Comb. Theory, Ser. A.
[10] Ian M. Wanless. Perfect Factorisations of Bipartite Graphs and Latin Squares Without Proper Subrectangles , 1999, Electron. J. Comb..
[11] Patric R. J. Östergård. Constructing combinatorial objects via cliques , 2005, Surveys in Combinatorics.
[12] K. Kunen. The structure of conjugacy closed loops , 2000 .
[13] Brendan D. McKay,et al. The number of transversals in a Latin square , 2006, Des. Codes Cryptogr..
[14] Brendan D. McKay,et al. Practical graph isomorphism, II , 2013, J. Symb. Comput..
[15] Ian M. Wanless,et al. A Generalisation of Transversals for Latin Squares , 2002, Electron. J. Comb..
[16] G. Mullen,et al. Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.
[17] B. McKay,et al. Small latin squares, quasigroups, and loops , 2007 .
[18] Patric R. J. Östergård,et al. The number of Latin squares of order 11 , 2009, Math. Comput..
[19] E. T. Parker,et al. The existence and construction of two families of designs for two successive experiments , 1970 .
[20] Ian M. Wanless,et al. The Existence of Latin Squares without Orthogonal Mates , 2006, Des. Codes Cryptogr..
[21] Dieter Jungnickel,et al. Maximal difference matrices of order <=10 , 1986, Discret. Math..
[22] Ian M. Wanless,et al. Monogamous latin squares , 2011, J. Comb. Theory, Ser. A.
[23] Ian M. Wanless,et al. Atomic Latin Squares of Order Eleven , 2004 .
[24] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[25] P. J. Owens,et al. Aspects of complete sets of 9 × 9 pairwise orthogonal latin squares , 1997, Discret. Math..
[26] E. H. Moore,et al. Tactical Memoranda I-III , 1896 .
[27] Ian M. Wanless,et al. Erratum: Latin squares with restricted transversals (Journal of Combinatorial Designs (2012) 20 (124-141)) , 2012 .
[28] I. Wanless,et al. Indivisible partitions of latin squares , 2011 .
[29] P. Kaski,et al. Classification Algorithms for Codes and Designs , 2005 .
[30] Ian M. Wanless,et al. Latin Squares with Restricted Transversals , 2012 .