Establishing dual electrogenerated chemiluminescence and multicolor electrochromism in functional ionic transition-metal complexes.

A combination of electrochromism and electroluminescence in functional materials could lead to single-layer dual electrochromic/electroluminescent (EC/EL) display devices, capable of simultaneous operation in emissive and reflective modes. Whereas such next generation displays could provide optimal visibility in any ambient lighting situation, materials available that exhibit such characteristics in the active layer are limited due to the required intrinsic multifunctionality (i.e., redox activity, electroluminescence, electrochromism, and ion conductivity) and to date can only be achieved via the rational design of ionic transition-metal complexes. Reported herein is the synthesis and characterization of a new family of acrylate-containing ruthenium (tris)bipyridine-based coordination complexes with multifunctional characteristics. Potential use of the presented compounds in EC/EL devices is established, as they are applied as cross-linked electrochromic films and electrochemiluminescent layers in light-emitting electrochemical cell devices. Electrochromic switching of the polymeric networks between yellow, orange, green, brown and transmissive states is demonstrated, and electrochemiluminescent devices based on the complexes synthesized show red-orange to deep red emission with λ(max) ranging from 680 to 722 nm and luminance up to 135 cd/m(2). Additionally, a dual EC/EL device prototype is presented where light emission and multicolor electrochromism occur from the same pixel comprised of a single active layer, demonstrating a true combination of these properties in ionic transition-metal complexes.

[1]  Satoru Shimada,et al.  Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex. 4. High-efficiency light-emitting devices based on derivatives of the tris(2,2'-bipyridyl) ruthenium(II) complex. , 2002, Journal of the American Chemical Society.

[2]  C. M. Elliott,et al.  Electrochromic and Conductivity Behavior of Tris[Ester-Substituted Bipyridine]Ruthenium[II] Polymers on Electrodes , 1988 .

[3]  Z. Wang,et al.  Novel near-infrared active dinuclear ruthenium complex materials: effects of substituents on optical attenuation , 2002 .

[4]  A. Bard,et al.  Thin-film solid-state electroluminescent devices based on tris(2,2'-bipyridine)ruthenium(II) complexes. , 2002, Journal of the American Chemical Society.

[5]  G. Malliaras,et al.  Electroluminescence in ruthenium(II) complexes. , 2002, Journal of the American Chemical Society.

[6]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[7]  A. Heeger,et al.  Visible light emission from semiconducting polymer diodes , 1991 .

[8]  Joseph T. Hupp,et al.  Electrochromic devices based on thin metallopolymeric films , 1992 .

[9]  A. Bard,et al.  Individually addressable submicron scale light-emitting devices based on electroluminescence of solid Ru(bpy)3(ClO4)2 films. , 2002, Journal of the American Chemical Society.

[10]  A. L. Dyer,et al.  Completing the color palette with spray-processable polymer electrochromics. , 2011, ACS applied materials & interfaces.

[11]  C. M. Elliott,et al.  Electrochemical and spectral investigations of ring-substituted bipyridine complexes of ruthenium , 1982 .

[12]  M. Grätzel,et al.  Efficient and stable solid-state light-emitting electrochemical cell using tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) hexafluorophosphate. , 2006, Journal of the American Chemical Society.

[13]  C. M. Elliott,et al.  Highly Efficient Solid-State Electrochemically Generated Chemiluminescence from Ester-Substituted Trisbipyridineruthenium(II)-Based Polymers , 1998 .

[14]  A. L. Dyer,et al.  Orange and Red to Transmissive Electrochromic Polymers Based on Electron-Rich Dioxythiophenes , 2010 .

[15]  David R. Rosseinsky,et al.  Electrochromism and Electrochromic Devices , 2007 .

[16]  P. Gros,et al.  Remarkable Effect of 4‐Substituted 2,2′‐Bipyridine Ligands on the Stereochemistry of Ruthenium(II) Complexes , 2008 .

[17]  C. M. Elliott,et al.  A Series of Multicolor Electrochromic Ruthenium(II) Trisbipyridine Complexes: Synthesis and Electrochemistry , 1999 .

[18]  L. Forster Intersystem crossing in transition metal complexes , 2006 .

[19]  Z. Wang,et al.  Dendritic mixed-valence dinuclear ruthenium complexes for optical attenuation at telecommunication wavelengths , 2003 .

[20]  Hartmut Rudmann,et al.  Single layer light-emitting devices with high efficiency and long lifetime based on tris(2,2 ' bipyridyl) ruthenium(II) hexafluorophosphate , 2001 .

[21]  J. Heinze,et al.  Heteroleptic 5,5-disubstituted-2,2-bipyridine complexes of ruthenium(II): spectral, electrochemical, and structural investigations , 2001 .

[22]  M. Marynowski Optical Society of America Honors Twelve , 1986 .

[23]  D Murphy,et al.  Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. , 2001, Journal of the American Chemical Society.

[24]  R. Murray,et al.  Synthetic and mechanistic investigations of the reductive electrochemical polymerization of vinyl-containing complexes of iron(II), ruthenium(II), and osmium(II) , 1983 .

[25]  Giacomo Bergamini,et al.  Photochemistry and Photophysics of Coordination Compounds: Ruthenium , 2007 .

[26]  P. Barbara,et al.  Stability of thin-film solid-state electroluminescent devices based on tris(2,2'-bipyridine)ruthenium(II) complexes. , 2003, Journal of the American Chemical Society.

[27]  A. Bard,et al.  Electrogenerated chemiluminescence. 35. Temperature dependence of the ECL efficiency of tris(2,2'-bipyridine)rubidium(2+) in acetonitrile and evidence for very high excited state yields from electron transfer reactions , 1979 .

[28]  Thomas J. Meyer,et al.  Spatial electrochromism in metallopolymeric films of ruthenium polypyridyl complexes , 1996 .

[29]  W. Chan,et al.  Synthesis and Properties of Polyamides and Polyesters On the basis of 2,2‘-Bipyridine-5,5‘-Dicarboxylic Acid and the Corresponding Polymer−Ruthenium Complexes , 2000 .

[30]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[31]  J. Reynolds,et al.  Poly(3,4‐alkylenedioxypyrroles): The PXDOPs as Versatile Yet Underutilized Electroactive and Conducting Polymers , 2006 .

[32]  Paul L Houston,et al.  Solid-state electroluminescent devices based on transition metal complexes. , 2003, Chemical communications.

[33]  T. J. Anderson,et al.  Decarboxylation of 2,2'-bipyridinyl-4,4'-dicarboxylic acid diethyl ester during microwave synthesis of the corresponding trichelated ruthenium complex. , 2006, Inorganic chemistry.

[34]  Hyuk‐Jun Kwon,et al.  Low‐Power Flexible Organic Light‐Emitting Diode Display Device , 2011, Advanced materials.

[35]  B. P. Sullivan,et al.  Application of the energy gap law to the decay of charge transfer excited states, solvent effects , 1982 .

[36]  Stephen R. Forrest,et al.  Introduction: Organic Electronics and Optoelectronics , 2007 .

[37]  R. Friend,et al.  Identification of a quenching species in ruthenium tris-bipyridine electroluminescent devices. , 2006, Journal of the American Chemical Society.

[38]  M. Rubner,et al.  Operational mechanism of light-emitting devices based on Ru(II) complexes: Evidence for electrochemical junction formation , 2003 .

[39]  F. Lytle,et al.  Luminescence of tris(2,2'-bipyridine)ruthenium(II) dichloride , 1969 .

[40]  T. Meyer,et al.  Application of the energy gap law to nonradiative, excited-state decay , 1983 .

[41]  George G. Malliaras,et al.  Electroluminescent devices from ionic transition metal complexes , 2007 .

[42]  F. Serein-Spirau,et al.  Synthesis and optical properties of (thienylene)–[1,6-dithienylhexa-1,3,5-trienylene] copolymers , 2001 .

[43]  A. L. Dyer,et al.  Navigating the Color Palette of Solution-Processable Electrochromic Polymers† , 2011 .

[44]  Yuichi Watanabe,et al.  Fabrication of Novel Reflective–Emissive Dual-mode Display Cell Based on Electrochemical Reaction , 2010 .

[45]  F. Wudl,et al.  Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency , 2004 .

[46]  John R. Reynolds,et al.  Propylenedioxythiophene (ProDOT)–phenylene copolymers allow a yellow-to-transmissive electrochrome , 2011 .

[47]  Hui-min Wang,et al.  Synthesis, Photoluminescence, and Electrochromism of Polyamides Containing (3,6-Di-tert-butylcarbazol-9-yl)triphenylamine Units , 2010 .

[48]  C. M. Elliott Electrochemistry and near infrared spectroscopy of tris(4,4′-dicarboxyethyl-2,2′-bipyridine)ruthenium(II) , 1980 .

[49]  Allen J. Bard,et al.  Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride , 1972 .

[50]  N. S. Sariciftci,et al.  Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system , 2011 .

[51]  Z. Wang,et al.  Near-Infrared Electrochromic and Electroluminescent Polymers Containing Pendant Ruthenium Complex Groups , 2006 .

[52]  David R. Rosseinsky,et al.  Electrochromic Systems and the Prospects for Devices , 2001 .

[53]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[54]  Qibing Pei,et al.  Polymer Light-Emitting Electrochemical Cells for High-Efficiency Low-Voltage Electroluminescent Devices , 2007, Journal of Display Technology.

[55]  J. Reynolds,et al.  Electron rich APFO polymer with dual electrochromism and electroluminescence , 2011 .

[56]  M. Berggren,et al.  Printable All‐Organic Electrochromic Active‐Matrix Displays , 2007 .

[57]  G. Crosby,et al.  Charge-transfer exited states of ruthenium(II) complexes. I. Quantum yield and decay measurements , 1975 .

[58]  Q. Pei,et al.  Light‐Emitting Electrochemical Cells with Crown Ether as Solid Electrolyte , 1997 .

[59]  Linghai Xie,et al.  Recent Developments in Top‐Emitting Organic Light‐Emitting Diodes , 2010, Advanced materials.

[60]  E. Ortí,et al.  Deep-red-emitting electrochemical cells based on heteroleptic bis-chelated ruthenium(II) complexes. , 2009, Inorganic chemistry.

[61]  Erik S. Handy,et al.  Solid-State Light-Emitting Devices Based on the Tris-Chelated Ruthenium(II) Complex. 2. Tris(bipyridyl)ruthenium(II) as a High-Brightness Emitter , 1999 .

[62]  John R. Reynolds,et al.  In situ colorimetric analysis of electrochromic polymers and devices , 2000 .

[63]  Liduo Wang,et al.  Toward Highly Efficient Solid‐State White Light‐Emitting Electrochemical Cells: Blue‐Green to Red Emitting Cationic Iridium Complexes with Imidazole‐Type Ancillary Ligands , 2009 .

[64]  V. Balzani,et al.  EXCITED-STATE PROPERTIES OF COMPLEXES OF THE TRIS(DIIMINE)RUTHENIUM(2+) ION FAMILY , 1983 .

[65]  R. Schmehl,et al.  Independent control of charge-transfer and metal-centered excited states in mixed-ligand polypyridine ruthenium(II) complexes via specific ligand design , 1986 .

[66]  C. M. Elliott,et al.  Stability and response studies of multicolor electrochromic polymer modified electrodes prepared from tris(5,5′-dicarboxyester-2,2′-bipyridine)ruthenium(II) , 1986 .