Entropy Power Inequality for the Rényi Entropy

The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.

[1]  Jean-François Bercher,et al.  A Renyi entropy convolution inequality with application , 2002, 2002 11th European Signal Processing Conference.

[2]  K. Ball Cube slicing in ⁿ , 1986 .

[3]  E. Lieb,et al.  Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .

[4]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[5]  O. Johnson Information Theory And The Central Limit Theorem , 2004 .

[6]  W. Beckner Inequalities in Fourier analysis , 1975 .

[7]  Giuseppe Toscani,et al.  The Concavity of Rényi Entropy Power , 2014, IEEE Transactions on Information Theory.

[8]  S. Bobkov,et al.  Bounds on the Maximum of the Density for Sums of Independent Random Variables , 2014 .

[9]  Mokshay Madiman,et al.  On the entropy of sums , 2008, 2008 IEEE Information Theory Workshop.

[10]  Olivier Rioul,et al.  Information Theoretic Proofs of Entropy Power Inequalities , 2007, IEEE Transactions on Information Theory.

[11]  E. Lieb Proof of an entropy conjecture of Wehrl , 1978 .

[12]  F. Barthe Optimal young's inequality and its converse: a simple proof , 1997, math/9704210.

[13]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[14]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[15]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .