A stochastic approach towards a predictive model on charge transport properties in carbon nanotube composites

Abstract A probabilistic approach is taken towards modeling the electrical transport properties of carbon nanotube composite materials. A pseudo-random generation method is presented with the ability to generate 3-D samples with a variety of different configurations. Periodic boundary conditions are employed in the directions perpendicular to the transport to minimize edge effects. Simulations produce values for drift velocity, carrier mobility, and conductivity in samples that account for geometrical features resembling those found in the lab. All results show an excellent agreement to the well-known power law characteristic of percolation processes, which is used to compare across simulations. One of the main objectives of this study was to determine optimum simulation box-sizes that minimize size-effects without rendering the simulation unaffordable. The effect of sample morphology, like nanotube waviness and aspect ratio, on charge transport within CNT composites is also evaluated. The accurate prediction of conductive properties as a function of the physical characteristics of the composite material, will aid in the design of composites that can, for instance actively monitor structural changes due to compression, stretching, or even damage through their effect on the conductivity.

[1]  H. Wagner,et al.  Sensors and sensitivity: Carbon nanotube buckypaper films as strain sensing devices , 2011 .

[2]  R. Vaia,et al.  Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments , 2009, Nanotechnology.

[3]  J. O. Aguilar,et al.  Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film , 2010 .

[4]  C. Lekakou,et al.  Electrofunctional polymer nanocomposites , 2008, 2008 2nd Electronics System-Integration Technology Conference.

[5]  Tsu-Wei Chou,et al.  Modeling of damage sensing in fiber composites using carbon nanotube networks , 2008 .

[6]  Joung-Man Park,et al.  Damage sensing and fracture detection of CNT paste using electrical resistance measurements , 2016 .

[7]  J. Loos,et al.  Preparation of Conductive Nanotube–Polymer Composites Using Latex Technology , 2004 .

[8]  P. Spanos,et al.  Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  R. Coehoorn,et al.  Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder , 2005 .

[10]  Dimitris C. Lagoudas,et al.  Characterization of electrical and thermal properties of carbon nanotube/epoxy composites , 2014 .

[11]  Hugh A. Bruck,et al.  Electrical and rheological percolation in polystyrene/MWCNT nanocomposites , 2007 .

[12]  B. Ashrafi,et al.  Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives , 2015 .

[13]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[14]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[15]  Ji Liang,et al.  Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes , 2007 .

[16]  Lin-wang Wang,et al.  Carrier hopping in disordered semiconducting polymers: How accurate is the Miller–Abrahams model? , 2010, 1005.1964.

[17]  Y. Liu,et al.  Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding , 2014 .

[18]  Mark J. Schulz,et al.  A carbon nanotube strain sensor for structural health monitoring , 2006 .

[19]  Prasad K. Yarlagadda,et al.  Sandwiched carbon nanotube film as strain sensor , 2012 .

[20]  Huy-Zu Cheng,et al.  The electromagnetic shielding effectiveness of carbon nanotubes polymer composites , 2007 .

[21]  E. Siochi,et al.  Electrical properties of single wall carbon nanotube reinforced polyimide composites , 2003 .

[22]  Wolfgang Bauhofer,et al.  A review and analysis of electrical percolation in carbon nanotube polymer composites , 2009 .

[23]  Jang‐Kyo Kim,et al.  Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites , 2008 .

[24]  Shaker A. Meguid,et al.  Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites , 2013 .

[25]  K. Watson,et al.  Dispersion of single wall carbon nanotubes by in situ polymerization under sonication , 2002 .

[26]  N. Hu,et al.  The electrical properties of polymer nanocomposites with carbon nanotube fillers , 2008, Nanotechnology.

[27]  Nicholas Fantuzzi,et al.  Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells , 2016 .

[28]  Jinping Ou,et al.  I–V characteristics and electro-mechanical response of different carbon black/epoxy composites , 2010 .

[29]  K. Nordtvedt from newton's moon to einstein's moon , 1996 .

[30]  M. Shaffer,et al.  Mesoscale modeling of electrical percolation in fiber-filled systems. , 2005, The Journal of chemical physics.

[31]  V. Popov Carbon Nanotubes: Properties and Applications , 2006 .

[32]  M. K. Njuguna Characterisation of multi wall carbon nanotube–polymer composites for strain sensing applications , 2012 .

[33]  Chuck Zhang,et al.  Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing , 2008 .

[34]  M. Gordon,et al.  Monotonically decreasing size distributions for one-dimensional Ga rows on Si(100) , 2005 .

[35]  Jia‐Horng Lin,et al.  Polymer composites made of multi-walled carbon nanotubes and graphene nano-sheets: Effects of sandwich structures on their electromagnetic interference shielding effectiveness , 2016 .

[36]  Jae Whan Cho,et al.  Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites , 2007 .

[37]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[38]  A. Domínguez-Rodríguez,et al.  Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites , 2012 .

[39]  E. Brown,et al.  Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes , 2005 .

[40]  A. Sastry,et al.  Modeling percolation in high-aspect-ratio fiber systems. II. The effect of waviness on the percolation onset. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  B. Ashrafi,et al.  Toughening of epoxy matrices with reduced single-walled carbon nanotubes. , 2011, ACS applied materials & interfaces.

[42]  S. Lanceros‐Méndez,et al.  Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene–butadiene–styrene composites for large strain sensor applications , 2014 .

[43]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[44]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[45]  Colette Lacabanne,et al.  DC and AC conductivity of carbon nanotubes-polyepoxy composites , 2003 .

[46]  John J. Moore,et al.  Introduction to Nanoscience and Nanotechnology , 2008 .

[47]  Effective-medium theory of hopping charge-carrier transport in weakly disordered organic solids , 2002 .

[48]  Joshua Brown,et al.  CTViz: A tool for the visualization of transport in nanocomposites. , 2016, Journal of molecular graphics & modelling.

[49]  Y. Mai,et al.  Anomalous electrical conductivity and percolation in carbon nanotube composites , 2008 .

[50]  Abdullah M. Asiri,et al.  Dual nature, self oxidized poly(o-anisidine) functionalized multiwall carbon nanotubes composite: Preparation, thermal and electrical studies , 2014 .

[51]  S. Maiti,et al.  A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: Electrical and thermo-mechanical properties , 2013 .

[52]  T. Takeda,et al.  Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading , 2012 .

[53]  H. Naguib,et al.  Synthesis and characterization of novel low density polyethylene–multiwall carbon nanotube porous composites , 2009 .

[54]  Yanju Liu,et al.  EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe , 2014 .

[55]  Paolo Ciambelli,et al.  Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites , 2008 .

[56]  Salvatore Torquato,et al.  Electric-field fluctuations in random dielectric composites , 1997 .

[57]  D. Chung Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing , 2012 .

[58]  M. Mariatti,et al.  Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites , 2012 .

[59]  Hansang Kim Enhanced crack detection sensitivity of carbon fiber composites by carbon nanotubes directly grown on carbon fibers , 2014 .

[60]  Darren J. Martin,et al.  Polyethylene multiwalled carbon nanotube composites , 2005 .

[61]  Xin Wang,et al.  Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites , 2013 .

[62]  Ning Hu,et al.  Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites , 2011, Sensors.

[63]  Xiaoming Tao,et al.  High stretchable MWNTs/polyurethane conductive nanocomposites , 2011 .

[64]  P. Lamberti,et al.  A morphological and structural approach to evaluate the electromagnetic performances of composites based on random networks of carbon nanotubes , 2014 .

[65]  D. Hui,et al.  Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites , 2014 .

[66]  Panayiotis Georgiopoulos,et al.  Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement , 2015 .

[67]  Yazan A. Hussain,et al.  CNT/ABS nanocomposites by solution processing: Proper dispersion and selective localization for low percolation threshold , 2013 .

[68]  D. Backman,et al.  Effects of SWCNTs on mechanical and thermal performance of epoxy at elevated temperatures , 2013, Journal of Materials Science.

[69]  M. Matsuo,et al.  Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold , 2009 .

[70]  P. Bandaru Electrical properties and applications of carbon nanotube structures. , 2007, Journal of nanoscience and nanotechnology.

[71]  Sung-hoon Ahn,et al.  Effect of Nanoparticles and Ion Implantation on the Electromagnetic Shielding of Glass–Epoxy Composites , 2006 .

[72]  Y. Ando,et al.  Physical properties of multiwalled carbon nanotubes , 1999 .

[73]  N. Hu,et al.  Tunneling effect in a polymer/carbon nanotube nanocompositestrain sensor , 2008 .

[74]  O. Stéphan,et al.  Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: From multiwalled to single-walled nanotubes , 2002 .

[75]  Jacob Fish,et al.  Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids , 2008 .

[76]  R. Wüthrich,et al.  Electromagnetic shielding of polymer–matrix composites with metallic nanoparticles , 2011 .

[77]  Werner J. Blau,et al.  Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films , 2002 .

[78]  P. Ma,et al.  Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes , 2007 .

[79]  M. Dresselhaus Carbon nanotubes , 1995 .

[80]  Qing-Qing Ni,et al.  Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer , 2007 .

[81]  Satish Kumar,et al.  Polyacrylonitrile/carbon nanotube composite films. , 2010, ACS applied materials & interfaces.

[82]  P. Lamberti,et al.  Numerical study of electrical behaviour in carbon nanotube composites , 2011 .

[83]  J. Jyoti,et al.  Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites , 2015 .

[84]  Jang‐Kyo Kim,et al.  Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites , 2007 .

[85]  Chuck Zhang,et al.  The high current-carrying capacity of various carbon nanotube-based buckypapers , 2008, Nanotechnology.

[86]  J. Seppälä,et al.  In situ polymerized nanocomposites: Polystyrene/CNT and Poly(methyl methacrylate)/CNT composites , 2011 .

[87]  N. Athanasopoulos,et al.  Sensing strain and damage in polyurethane-MWCNT nano-composite foams using electrical measurements , 2013 .

[88]  G. Kearley,et al.  The vibrational spectrum of solid ferrocene by inelastic neutron scattering , 2000 .

[89]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[90]  Laurent Pambaguian,et al.  Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites , 2015 .

[91]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[92]  S. Swain,et al.  Electrical conductivity and oxygen permeability of polyacrylonitrile/multiwalled carbon nanotubes composites , 2012 .

[93]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[94]  Wenyan Duan,et al.  Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites , 2014 .