From Statistical Relational to Neuro-Symbolic Artificial Intelligence

Neuro-symbolic and statistical relational artificial intelligence both integrate frameworks for learning with logical reasoning. This survey identifies several parallels across seven different dimensions between these two fields. These cannot only be used to characterize and position neuro-symbolic artificial intelligence approaches but also to identify a number of directions for further research.

[1]  Luc De Raedt,et al.  Neuro-Symbolic = Neural + Logical + Probabilistic , 2019, NeSy@IJCAI.

[2]  Peter A. Flach Simply logical - intelligent reasoning by example , 1994, Wiley professional computing.

[3]  Daniel Gooch,et al.  Communications of the ACM , 2011, XRDS.

[4]  Sameer Singh,et al.  Injecting Logical Background Knowledge into Embeddings for Relation Extraction , 2015, NAACL.

[5]  Fan Yang,et al.  Differentiable Learning of Logical Rules for Knowledge Base Reasoning , 2017, NIPS.

[6]  Paolo Frasconi,et al.  Prediction of protein beta-residue contacts by Markov logic networks with grounding-specific weights , 2009, Bioinform..

[7]  Luc De Raedt,et al.  Transforming Probabilistic Programs into Algebraic Circuits for Inference and Learning , 2019 .

[8]  Swarat Chaudhuri,et al.  HOUDINI: Lifelong Learning as Program Synthesis , 2018, NeurIPS.

[9]  Thomas Demeester,et al.  Adversarial Sets for Regularising Neural Link Predictors , 2017, UAI.

[10]  Steven Schockaert,et al.  Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures , 2018, J. Artif. Intell. Res..

[11]  Amy Loutfi,et al.  Semantic Referee: A Neural-Symbolic Framework for Enhancing Geospatial Semantic Segmentation , 2019, Semantic Web.

[12]  David Poole,et al.  The Independent Choice Logic and Beyond , 2008, Probabilistic Inductive Logic Programming.

[13]  Chong Wang,et al.  Neural Logic Machines , 2019, ICLR.

[14]  Edward Grefenstette,et al.  Differentiable Reasoning on Large Knowledge Bases and Natural Language , 2019, Knowledge Graphs for eXplainable Artificial Intelligence.

[15]  Fan Yang,et al.  TensorLog: Deep Learning Meets Probabilistic DBs , 2017, ArXiv.

[16]  Luc De Raedt,et al.  DeepProbLog: Neural Probabilistic Logic Programming , 2018, BNAIC/BENELEARN.

[17]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[18]  S. Muggleton Stochastic Logic Programs , 1996 .

[19]  Luc De Raedt,et al.  Parameter Learning in Probabilistic Databases: A Least Squares Approach , 2008, ECML/PKDD.

[20]  GetoorLise,et al.  Hinge-loss Markov random fields and probabilistic soft logic , 2017 .

[21]  Mukund Raghothaman,et al.  Synthesizing Datalog Programs Using Numerical Relaxation , 2019, IJCAI.

[22]  Tim Rocktäschel,et al.  Programming with a Differentiable Forth Interpreter , 2016, ICML.

[23]  Adnan Darwiche,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence SDD: A New Canonical Representation of Propositional Knowledge Bases , 2022 .

[24]  Thomas Lukasiewicz,et al.  Learning to Reason: Leveraging Neural Networks for Approximate DNF Counting , 2019, AAAI.

[25]  H. J. Mclaughlin,et al.  Learn , 2002 .

[26]  Zhi-Hua Zhou,et al.  Bridging Machine Learning and Logical Reasoning by Abductive Learning , 2019, NeurIPS.

[27]  Tim Rocktäschel,et al.  End-to-end Differentiable Proving , 2017, NIPS.

[28]  Luc De Raedt,et al.  Statistical Relational Artificial Intelligence: Logic, Probability, and Computation , 2016, Statistical Relational Artificial Intelligence.

[29]  Ulf Leser,et al.  NLProlog: Reasoning with Weak Unification for Question Answering in Natural Language , 2019, ACL.

[30]  Luc De Raedt,et al.  Inference and learning in probabilistic logic programs using weighted Boolean formulas , 2013, Theory and Practice of Logic Programming.

[31]  Sumit Gulwani,et al.  Neural-Guided Deductive Search for Real-Time Program Synthesis from Examples , 2018, ICLR.

[32]  Luc De Raedt,et al.  Logical and relational learning , 2008, Cognitive Technologies.

[33]  F. Pfenning Theory and Practice of Logic Programming , 2014 .

[34]  Guy Van den Broeck,et al.  Query Processing on Probabilistic Data: A Survey , 2017, Found. Trends Databases.

[35]  Pedro M. Domingos,et al.  Efficient Weight Learning for Markov Logic Networks , 2007, PKDD.

[36]  Andrew Cropper,et al.  Playgol: learning programs through play , 2019, IJCAI.

[37]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[38]  Marco Gori,et al.  Semantic-based regularization for learning and inference , 2017, Artif. Intell..

[39]  Manfred Jaeger,et al.  Model-Theoretic Expressivity Analysis , 2008, Probabilistic Inductive Logic Programming.

[40]  Chuang Gan,et al.  The Neuro-Symbolic Concept Learner: Interpreting Scenes Words and Sentences from Natural Supervision , 2019, ICLR.

[41]  Marco Maggini,et al.  Relational Neural Machines , 2020, ECAI.

[42]  Stuart J. Russell,et al.  Unifying logic and probability , 2015, Commun. ACM.

[43]  Luciano Serafini,et al.  Neural-Symbolic Computing: An Effective Methodology for Principled Integration of Machine Learning and Reasoning , 2019, FLAP.

[44]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[45]  Thomas Demeester,et al.  Lifted Rule Injection for Relation Embeddings , 2016, EMNLP.

[46]  Armando Solar-Lezama,et al.  Learning to Infer Graphics Programs from Hand-Drawn Images , 2017, NeurIPS.

[47]  De Raedt,et al.  Advances in Inductive Logic Programming , 1996 .

[48]  Chuang Gan,et al.  Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding , 2018, NeurIPS.

[49]  Guy Van den Broeck,et al.  A Semantic Loss Function for Deep Learning with Symbolic Knowledge , 2017, ICML.

[50]  Kai-Uwe Kühnberger,et al.  Neural-Symbolic Learning and Reasoning: A Survey and Interpretation , 2017, Neuro-Symbolic Artificial Intelligence.

[51]  Wannes Meert,et al.  Learning Relational Representations with Auto-encoding Logic Programs , 2019, IJCAI.

[52]  Pedro M. Domingos,et al.  Learning the structure of Markov logic networks , 2005, ICML.

[53]  Paul Strauss,et al.  Advances In Inductive Logic Programming , 2016 .

[54]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[55]  Luc De Raedt,et al.  Bayesian Logic Programming: Theory and Tool , 2007 .

[56]  Richard Evans,et al.  Learning Explanatory Rules from Noisy Data , 2017, J. Artif. Intell. Res..

[57]  Sinno Jialin Pan,et al.  Integrating Deep Learning with Logic Fusion for Information Extraction , 2019, AAAI.

[58]  Armando Solar-Lezama,et al.  Learning Libraries of Subroutines for Neurally-Guided Bayesian Program Induction , 2018, NeurIPS.

[59]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[60]  Felix Kaufmann Truth and Logic , 1940 .

[61]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[62]  Luc De Raedt,et al.  Probabilistic (logic) programming concepts , 2015, Machine Learning.