A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection

Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron-microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly’s head-direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.

[1]  A. J. Pollack,et al.  Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis , 2008, Journal of Comparative Physiology A.

[2]  Horst Mittelstaedt,et al.  Mechanismen der Orientierung ohne richtende Außenreize , 1973 .

[3]  J. Knierim,et al.  Attractor dynamics of spatially correlated neural activity in the limbic system. , 2012, Annual review of neuroscience.

[4]  Qili Liu,et al.  Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit , 2016, Cell.

[5]  Gregory S.X.E. Jefferis,et al.  Neural circuit basis of aversive odour processing in Drosophila from sensory input to descending output , 2018 .

[6]  Uwe Homberg,et al.  Receptive Fields of Locust Brain Neurons Are Matched to Polarization Patterns of the Sky , 2014, Current Biology.

[7]  Minrong Ai,et al.  Taste-independent nutrient selection is mediated by a brain-specific Na+/solute cotransporter in Drosophila , 2013, Nature Neuroscience.

[8]  Davi Bock,et al.  The Neuroanatomical Ultrastructure and Function of a Biological Ring Attractor , 2019, Neuron.

[9]  Benjamin L de Bivort,et al.  Behavioral idiosyncrasy reveals genetic control of phenotypic variability , 2014, Proceedings of the National Academy of Sciences.

[10]  Uwe Homberg,et al.  Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. , 2015, Journal of neurophysiology.

[11]  Angelique C. Paulk,et al.  Oscillatory brain activity in spontaneous and induced sleep stages in flies , 2017, Nature Communications.

[12]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[13]  Surya Ganguli,et al.  A deep learning framework for neuroscience , 2019, Nature Neuroscience.

[14]  Satoshi Murata,et al.  Pharyngeal stimulation with sugar triggers local searching behavior in Drosophila , 2017, Journal of Experimental Biology.

[15]  U. Homberg In search of the sky compass in the insect brain , 2004, Naturwissenschaften.

[16]  M V Srinivasan,et al.  Two odometers in honeybees? , 2008, Journal of Experimental Biology.

[17]  Anthony Leonardo,et al.  Internal models direct dragonfly interception steering , 2014, Nature.

[18]  Neil Burgess,et al.  Neuronal vector coding in spatial cognition , 2020, Nature Reviews Neuroscience.

[19]  Marie P. Suver,et al.  Encoding of Wind Direction by Central Neurons in Drosophila , 2019, Neuron.

[20]  Michael H. Dickinson,et al.  Body saccades of Drosophila consist of stereotyped banked turns , 2015, The Journal of Experimental Biology.

[21]  Ranulfo Romo,et al.  Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations , 2003, Current Opinion in Neurobiology.

[22]  F. Jackson,et al.  A Secreted Ig-Domain Protein Required in Both Astrocytes and Neurons for Regulation of Drosophila Night Sleep , 2019, Current Biology.

[23]  Johannes D. Seelig,et al.  Integration of sleep homeostasis and navigation in Drosophila , 2020 .

[24]  Matthew S. Thimgan,et al.  Inducing Sleep by Remote Control Facilitates Memory Consolidation in Drosophila , 2011, Science.

[25]  Allan Wong,et al.  Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila , 2019, eLife.

[26]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[27]  Giulio Tononi,et al.  Sleep and wakefulness modulate gene expression in Drosophila , 2005, Journal of neurochemistry.

[28]  J. Armstrong,et al.  Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets , 2010, The Journal of comparative neurology.

[29]  Feng Li,et al.  A connectome and analysis of the adult Drosophila central brain , 2020, bioRxiv.

[30]  D. Tank,et al.  Functional dissection of circuitry in a neural integrator , 2007, Nature Neuroscience.

[31]  Albert Cardona,et al.  Synaptic counts approximate synaptic contact area in Drosophila , 2020 .

[32]  Gero Miesenböck,et al.  A potassium channel β-subunit couples mitochondrial electron transport to sleep , 2019, Nature.

[33]  Peter T Weir,et al.  Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. , 2014, Journal of neurophysiology.

[34]  David S. Touretzky,et al.  Neural Representation of Space Using Sinusoidal Arrays , 1993, Neural Computation.

[35]  Michael Mangan,et al.  A decentralised neural model explaining optimal integration of navigational strategies in insects , 2020, eLife.

[36]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly , 2013, The Journal of comparative neurology.

[37]  Christopher M Patrick,et al.  Neural circuitry linking mating and egg laying in Drosophila females , 2020, Nature.

[38]  Vivek Jayaraman,et al.  Author response: Building a functional connectome of the Drosophila central complex , 2018 .

[39]  Ting-Hao Huang,et al.  Methods to investigate the structure and connectivity of the nervous system , 2017, Fly.

[40]  Mark A. Frye,et al.  Binocular Interactions Underlying the Classic Optomotor Responses of Flying Flies , 2012, Front. Behav. Neurosci..

[41]  Mark S. Cembrowski,et al.  Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons , 2019, Nature Reviews Neuroscience.

[42]  V. Jayaraman,et al.  Studying sensorimotor integration in insects , 2011, Current Opinion in Neurobiology.

[43]  Jonathan Green,et al.  Building a heading signal from anatomically defined neuron types in the Drosophila central complex , 2018, Current Opinion in Neurobiology.

[44]  Ronald L. Davis,et al.  Sleep Facilitates Memory by Blocking Dopamine Neuron-Mediated Forgetting , 2015, Cell.

[45]  Paola Cognigni,et al.  Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila , 2018, Current Opinion in Neurobiology.

[46]  Gerald M. Rubin,et al.  Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body , 2015, Front. Neural Circuits.

[47]  Preeti Sareen,et al.  A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila , 2020, Nature Communications.

[48]  R. Strauss,et al.  A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[50]  Sung Soo Kim,et al.  Generation of stable heading representations in diverse visual scenes , 2019, Nature.

[51]  Ken Cheng,et al.  Experimental ethology of learning in desert ants: Becoming expert navigators , 2019, Behavioural Processes.

[52]  Uwe Homberg,et al.  Interneurones of the central complex in the bee brain (Apis mellifera, L.) , 1985 .

[53]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[54]  Ramón Huerta,et al.  Dynamical encoding by networks of competing neuron groups: winnerless competition. , 2001 .

[55]  Volker Hartenstein,et al.  Recurrent Circuitry for Balancing Sleep Need and Sleep , 2018, Neuron.

[56]  Michael H. Dickinson,et al.  Sun Navigation Requires Compass Neurons in Drosophila , 2018, Current Biology.

[57]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[58]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[59]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[60]  Mustafa Talay,et al.  Author response: Circuits that encode and guide alcohol-associated preference , 2020 .

[61]  Torsten Rohlfing,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[62]  Uwe Homberg,et al.  Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. , 2005, Journal of neurophysiology.

[63]  I A Meinertzhagen,et al.  Evolutionary progression at synaptic connections made by identified homologous neurones. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Michael E. Greenberg,et al.  Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut , 2020, Cell.

[65]  Leslie C Griffith,et al.  Neuromodulatory control of sleep in Drosophila melanogaster: integration of competing and complementary behaviors , 2013, Current Opinion in Neurobiology.

[66]  Edward T. Bullmore,et al.  The Multilayer Connectome of Caenorhabditis elegans , 2016, PLoS Comput. Biol..

[67]  M Heisenberg,et al.  No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. , 1992, Journal of neurogenetics.

[68]  Chung-Chuan Lo,et al.  Coupled symmetric and asymmetric circuits underlying spatial orientation in fruit flies , 2017, Nature Communications.

[69]  Anthony M. Zador A Critique of Pure Learning: What Artificial Neural Networks can Learn from Animal Brains , 2019 .

[70]  Hokto Kazama,et al.  Parallel encoding of recent visual experience and self-motion during navigation in Drosophila , 2017, Nature Neuroscience.

[71]  Mathias F. Wernet,et al.  Parallel Visual Pathways with Topographic versus Nontopographic Organization Connect the Drosophila Eyes to the Central Brain , 2020, iScience.

[72]  Anna Honkanen,et al.  The insect central complex and the neural basis of navigational strategies , 2019, Journal of Experimental Biology.

[73]  Rudolf Jander,et al.  Die optische Richtungsorientierung der Roten Waldameise (Formica Ruea L.) , 1957, Zeitschrift für vergleichende Physiologie.

[74]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[75]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[76]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[77]  T. Collett,et al.  Insect learning flights and walks , 2018, Current Biology.

[78]  Michael H. Dickinson,et al.  Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster , 2017, Current Biology.

[79]  R Huerta,et al.  Dynamical encoding by networks of competing neuron groups: winnerless competition. , 2001, Physical review letters.

[80]  Björn Brembs,et al.  Faculty Opinions recommendation of Inverse control of turning behavior by dopamine D1 receptor signaling in columnar and ring neurons of the central complex in drosophila. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[81]  Jeffrey M. Donlea,et al.  Neuronal and molecular mechanisms of sleep homeostasis. , 2017, Current opinion in insect science.

[82]  Allan I Pack,et al.  Rest in Drosophila Is a Sleep-like State , 2000, Neuron.

[83]  Peter T Weir,et al.  Flying Drosophila melanogaster maintain arbitrary but stable headings relative to the angle of polarized light , 2018, Journal of Experimental Biology.

[84]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[85]  Matthias Wittlinger,et al.  Optic flow odometry operates independently of stride integration in carried ants , 2016, Science.

[86]  Wei Zhang,et al.  Parallel Mechanosensory Pathways Direct Oviposition Decision-Making in Drosophila , 2020, Current Biology.

[87]  Aljoscha Nern,et al.  The connectome of the adult Drosophila mushroom body provides insights into function , 2020, eLife.

[88]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[89]  Ran Lu,et al.  FlyWire: Online community for whole-brain connectomics , 2020, Nature Methods.

[90]  M. Carlsson,et al.  Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila , 2012, Neuroscience.

[91]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[92]  A. Sehgal,et al.  The Drosophila circuitry of sleep–wake regulation , 2017, Current Opinion in Neurobiology.

[93]  DaeEun Kim,et al.  Path Integration Mechanism with Coarse Coding of Neurons , 2011, Neural Processing Letters.

[94]  Juan Huang,et al.  Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila , 2017, eLife.

[95]  R. Strauss,et al.  Visual Working Memory Requires Permissive and Instructive NO/cGMP Signaling at Presynapses in the Drosophila Central Brain , 2017, Current Biology.

[96]  Nachum Ulanovsky,et al.  Encoding of Head Direction by Hippocampal Place Cells in Bats , 2014, The Journal of Neuroscience.

[97]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[98]  Casey M. Schneider-Mizell,et al.  Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila , 2016, Cell.

[99]  Alan Morgan,et al.  Secretory granule exocytosis. , 2003, Physiological reviews.

[100]  J. Armstrong,et al.  Building the central complex in Drosophila: The generation and development of distinct neural subsets , 2010, The Journal of comparative neurology.

[101]  Chris Q Doe,et al.  Temporal identity establishes columnar neuron morphology, connectivity, and function in a Drosophila navigation circuit , 2018, bioRxiv.

[102]  D. Owald,et al.  Network-Specific Synchronization of Electrical Slow-Wave Oscillations Regulates Sleep Drive in Drosophila , 2019, Current Biology.

[103]  Konrad P. Körding,et al.  What does it mean to understand a neural network? , 2019, ArXiv.

[104]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[105]  Nicholas D. Kathman,et al.  Representation of Haltere Oscillations and Integration with Visual Inputs in the Fly Central Complex , 2019, The Journal of Neuroscience.

[106]  Michael H. Dickinson,et al.  The long-distance flight behavior of Drosophila suggests a general model for wind-assisted dispersal in insects , 2020 .

[107]  Uwe Homberg,et al.  Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex , 2016, Front. Behav. Neurosci..

[108]  Stanley Heinze,et al.  Transformation of Polarized Light Information in the Central Complex of the Locust , 2009, The Journal of Neuroscience.

[109]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[110]  Stanley Heinze,et al.  Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons , 2008, The Journal of comparative neurology.

[111]  D. Nässel,et al.  Drosophila neuropeptides in regulation of physiology and behavior , 2010, Progress in Neurobiology.

[112]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[113]  R Wehner,et al.  Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[115]  Roland Hengstenberg,et al.  Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. , 1992, Journal of Comparative Physiology A.

[116]  Marta Zlatic,et al.  Author response: Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva , 2018 .

[117]  Louis K. Scheffer,et al.  A connectome of a learning and memory center in the adult Drosophila brain , 2017, eLife.

[118]  Rüdiger Wehner,et al.  Desert Navigator , 2020 .

[119]  Pavel Masek,et al.  Identification of Neurons with a Privileged Role in Sleep Homeostasis in Drosophila melanogaster , 2015, Current Biology.

[120]  Georg Hartmann,et al.  The ant's path integration system: a neural architecture , 1995, Biological Cybernetics.

[121]  Kechen Zhang,et al.  Universal conditions for exact path integration in neural systems , 2012, Proceedings of the National Academy of Sciences.

[122]  Hugues Berry,et al.  A Neuron–Glial Perspective for Computational Neuroscience , 2019, Springer Series in Computational Neuroscience.

[123]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[124]  Johannes D. Seelig,et al.  Author response: Angular velocity integration in a fly heading circuit , 2017 .

[125]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[126]  Fang Zhang,et al.  Fan-Shaped Body Neurons in the Drosophila Brain Regulate Both Innate and Conditioned Nociceptive Avoidance. , 2018, Cell reports.

[127]  Michael H. Dickinson,et al.  A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila , 2017, Current Biology.

[128]  R E Ritzmann,et al.  Electrolytic lesions within central complex neuropils of the cockroach brain affect negotiation of barriers , 2010, Journal of Experimental Biology.

[129]  Frank Hirth,et al.  Inverse Control of Turning Behavior by Dopamine D1 Receptor Signaling in Columnar and Ring Neurons of the Central Complex in Drosophila , 2019, Current Biology.

[130]  Kei Ito,et al.  Optic Glomeruli and Their Inputs in Drosophila Share an Organizational Ground Pattern with the Antennal Lobes , 2012, The Journal of Neuroscience.

[131]  L F Abbott,et al.  Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. , 2001, Progress in brain research.

[132]  Roland Maurer,et al.  A connectionist model of path integration with and without a representation of distance to the starting point , 1998, Psychobiology.

[133]  Zhefeng Gong,et al.  Visual pattern memory requires foraging function in the central complex of Drosophila. , 2008, Learning & memory.

[134]  Kevan A. C. Martin,et al.  Structure and function of a neocortical synapse , 2019, Nature.

[135]  Cole Gilbert,et al.  Proprioceptive encoding of head position in the black soldier fly, Hermetia illucens (L.) (Stratiomyidae) , 2006, Journal of Experimental Biology.

[136]  Vivek Jayaraman,et al.  The insect central complex , 2016, Current Biology.

[137]  A Fröhlich,et al.  Freeze‐fracture study of an invertebrate multiple‐contact synapse: The fly photoreceptor tetrad , 1985, The Journal of comparative neurology.

[138]  Roshini Randeniya,et al.  Acute control of the sleep switch in Drosophila reveals a role for gap junctions in regulating behavioral responsiveness , 2018, eLife.

[139]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[140]  Kristin M Scaplen,et al.  Circuits that encode and guide alcohol-associated preference , 2020, eLife.

[141]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[142]  Roland Strauss,et al.  Locomotor control by the central complex in Drosophila—An analysis of the tay bridge mutant , 2008, Developmental neurobiology.

[143]  Volker Hartenstein,et al.  A visual pathway for skylight polarization processing in Drosophila , 2020 .

[144]  Roy E. Ritzmann,et al.  Cellular Basis of Head Direction and Contextual Cues in the Insect Brain , 2016, Current Biology.

[145]  Marta Zlatic,et al.  Useful road maps: studying Drosophila larva’s central nervous system with the help of connectomics , 2020, Current Opinion in Neurobiology.

[146]  Giulio Tononi,et al.  Sleep and Synaptic Homeostasis: Structural Evidence in Drosophila , 2011, Science.

[147]  G. Tononi,et al.  Correlates of sleep and waking in Drosophila melanogaster. , 2000, Science.

[148]  Rudolf Jander,et al.  A sun compass in monarch butterflies , 1997, nature.

[149]  Wolfgang Alt,et al.  Egocentric path integration models and their application to desert arthropods. , 2005, Journal of theoretical biology.

[150]  Horst Mittelstaedt,et al.  The role of multimodal convergence in homing by path integration , 1983 .

[151]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[152]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[153]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[154]  R. Andersen,et al.  Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits , 2009, Neuron.

[155]  G. Rubin,et al.  Cell types and neuronal circuitry underlying female aggression in Drosophila , 2020, eLife.

[156]  Basil el Jundi,et al.  Integration of polarization and chromatic cues in the insect sky compass , 2014, Journal of Comparative Physiology A.

[157]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[158]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[159]  Vivek Jayaraman,et al.  Studying small brains to understand the building blocks of cognition , 2016, Current Opinion in Neurobiology.

[160]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[161]  Damon A. Clark,et al.  The manifold structure of limb coordination in walking Drosophila , 2019, eLife.

[162]  Benjamin L. de Bivort,et al.  Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge , 2016, bioRxiv.

[163]  Barbara Webb,et al.  Author response: The head direction circuit of two insect species , 2020 .

[164]  Vilas Menon,et al.  Continuous Variation within Cell Types of the Nervous System , 2018, Trends in Neurosciences.

[165]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[166]  James Phillips-Portillo,et al.  The central complex of the flesh fly, Neobellieria bullata: Recordings and morphologies of protocerebral inputs and small‐field neurons , 2012, The Journal of comparative neurology.

[167]  R. Sandeman,et al.  Extraretinal photoreceptors in the brain of the crayfish Cherax destructor. , 1990, Journal of neurobiology.

[168]  B. van Swinderen,et al.  A conserved role for sleep in supporting spatial learning in Drosophila , 2020, bioRxiv.

[169]  Allen Cheung,et al.  Finding the Way with a Noisy Brain , 2010, PLoS Comput. Biol..

[170]  Steven M. Reppert,et al.  Connecting the Navigational Clock to Sun Compass Input in Monarch Butterfly Brain , 2005, Neuron.

[171]  Barbara Webb,et al.  The head direction circuit of two insect species , 2020, eLife.

[172]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[173]  Xiaojun Xie,et al.  The laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections , 2017, eLife.

[174]  Surya Ganguli,et al.  On simplicity and complexity in the brave new world of large-scale neuroscience , 2015, Current Opinion in Neurobiology.

[175]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[176]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[177]  Gerald M. Rubin,et al.  Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog , 2018, The Journal of comparative neurology.

[178]  Thomas S. Collett,et al.  How does the insect central complex use mushroom body output for steering? , 2018, Current Biology.

[179]  Horst Mittelstaedt,et al.  Homing by Path Integration , 1982 .

[180]  Volker Hartenstein,et al.  Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy , 2018, The Journal of comparative neurology.

[181]  Stanley Heinze,et al.  Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly , 2014 .

[182]  Uwe Homberg,et al.  A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain , 2008, The Journal of comparative neurology.

[183]  B. van Swinderen,et al.  A conserved role for sleep in supporting Spatial Learning in Drosophila. , 2020, Sleep.

[184]  Burak Tepe,et al.  Drosophila Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains , 2020, The Journal of Neuroscience.

[185]  Barbara Webb,et al.  The Central Complex as a Potential Substrate for Vector Based Navigation , 2019, Front. Psychol..

[186]  Scott Waddell,et al.  Clock and cycle Limit Starvation-Induced Sleep Loss in Drosophila , 2010, Current Biology.

[187]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[188]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[189]  Labhart,et al.  How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neurone , 1999, The Journal of experimental biology.

[190]  Ryohei Kanzaki,et al.  Neurons associated with the flip‐flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain , 2010, The Journal of comparative neurology.

[191]  Volker Hartenstein,et al.  Neuronal Constituents and Putative Interactions Within the Drosophila Ellipsoid Body Neuropil , 2018, bioRxiv.

[192]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[193]  Roshini Randeniya,et al.  Author response: Acute control of the sleep switch in Drosophila reveals a role for gap junctions in regulating behavioral responsiveness , 2018 .

[194]  U. Homberg,et al.  Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria , 1994, Journal of Comparative Physiology A.

[195]  Ethan K. Scott,et al.  Integrative whole-brain neuroscience in larval zebrafish , 2018, Current Opinion in Neurobiology.

[196]  Keram Pfeiffer,et al.  Neuroarchitecture of the dung beetle central complex , 2018, The Journal of comparative neurology.

[197]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[198]  Vikas Bhandawat,et al.  Organization of descending neurons in Drosophila melanogaster , 2016, Scientific Reports.

[199]  Aaron Batista Inner space: Reference frames , 2002, Current Biology.

[200]  Martin Egelhaaf,et al.  Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing , 2011, Front. Neural Circuits.

[201]  Jamey S. Kain,et al.  Neuronal control of locomotor handedness in Drosophila , 2014, Proceedings of the National Academy of Sciences.

[202]  V. G. Dethier,et al.  Communication by Insects: Physiology of Dancing. , 1957, Science.

[203]  Vivek Jayaraman,et al.  Mechanisms Underlying the Neural Computation of Head Direction. , 2019, Annual review of neuroscience.

[204]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[205]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[206]  Bard Ermentrout,et al.  Complex dynamics in winner-take-all neural nets with slow inhibition , 1992, Neural Networks.

[207]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[208]  R. Wehner,et al.  The ontogeny of foraging behaviour in desert ants , Cataglyphis bicolor , 2004 .

[209]  Xiangzhong Zheng,et al.  Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. , 2008, Cell metabolism.

[210]  Michael B. Reiser,et al.  Author response: Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016 .

[211]  A. Aldo Faisal,et al.  Author response: Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off , 2016 .

[212]  Gerald M. Rubin,et al.  Author response: A connectome of a learning and memory center in the adult Drosophila brain , 2017 .

[213]  Charlotte Helfrich-Förster,et al.  Sleep in Insects. , 2018, Annual review of entomology.

[214]  A. Sehgal,et al.  Circadian Rhythms and Sleep in Drosophila melanogaster , 2017, Genetics.

[215]  R. Ritzmann,et al.  Neural activity in the central complex of the cockroach brain is linked to turning behaviors , 2013, Journal of Experimental Biology.

[216]  T. Hosoya,et al.  Lattice system of functionally distinct cell types in the neocortex , 2017, Science.

[217]  Uwe Homberg,et al.  Ultrastructure of GABA- and Tachykinin-Immunoreactive Neurons in the Lower Division of the Central Body of the Desert Locust , 2016, Front. Behav. Neurosci..

[218]  Christian Klämbt,et al.  Neuron–glia interaction in the Drosophila nervous system , 2020, Developmental neurobiology.

[219]  Aljoscha Nern,et al.  The connectome of the adult Drosophila mushroom body: implications for function , 2020, bioRxiv.

[220]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[221]  Allen Cheung,et al.  Animal path integration: a model of positional uncertainty along tortuous paths. , 2014, Journal of theoretical biology.

[222]  Xue-Xin Wei,et al.  Emergence of grid-like representations by training recurrent neural networks to perform spatial localization , 2018, ICLR.

[223]  N. Strausfeld A brain region in insects that supervises walking. , 1999, Progress in brain research.

[224]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[225]  Uwe Homberg,et al.  Matched-filter coding of sky polarization results in an internal sun compass in the brain of the desert locust , 2020, Proceedings of the National Academy of Sciences.

[226]  L. Griffith,et al.  A Serotonin-Modulated Circuit Controls Sleep Architecture to Regulate Cognitive Function Independent of Total Sleep in Drosophila , 2019, Current Biology.

[227]  Michael H. Dickinson,et al.  Diverse food-sensing neurons trigger idiothetic local search in Drosophila , 2018 .

[228]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[229]  Preeti Sareen,et al.  A neural signature of choice under sensory conflict in Drosophila , 2020 .

[230]  Michael H. Dickinson,et al.  Author response: The functional organization of descending sensory-motor pathways in Drosophila , 2018 .

[231]  Jonathan Green,et al.  A neural heading estimate is compared with an internal goal to guide oriented navigation , 2019, Nature Neuroscience.

[232]  Zhefeng Gong,et al.  Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. , 2009, Learning & memory.

[233]  Richard A. Andersen,et al.  Coordinate transformations in the representation of spatial information , 1993, Current Opinion in Neurobiology.

[234]  Philipp Schlegel,et al.  Learning from connectomics on the fly. , 2017, Current opinion in insect science.

[235]  Thomas Labhart,et al.  Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors , 2003, Cell.

[236]  Ajay Narendra,et al.  Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants , 2020, Current Biology.

[237]  R. Strauss,et al.  Drosophila Acquires a Long-Lasting Body-Size Memory from Visual Feedback , 2019, Current Biology.

[238]  Helmut Schwegler,et al.  Path integration — a network model , 1995, Biological Cybernetics.

[239]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[240]  I. Meinertzhagen,et al.  Ultrastructure and quantification of synapses in the insect nervous system , 1996, Journal of Neuroscience Methods.

[241]  Roland Strauss,et al.  Cell types and coincident synapses in the ellipsoid body of Drosophila , 2014, The European journal of neuroscience.

[242]  Rachel I. Wilson,et al.  Sensorimotor experience remaps visual input to a heading-direction network , 2019, Nature.

[243]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[244]  Volker Hartenstein,et al.  Lineage‐based analysis of the development of the central complex of the drosophila brain , 2011, The Journal of comparative neurology.

[245]  Michael B. Reiser,et al.  Ultra-selective looming detection from radial motion opponency , 2017, Nature.

[246]  C. Saper,et al.  Sleep State Switching , 2010, Neuron.

[247]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[248]  Mandyam V. Srinivasan,et al.  Where paths meet and cross: navigation by path integration in the desert ant and the honeybee , 2015, Journal of Comparative Physiology A.

[249]  G. Miesenböck,et al.  Operation of a Homeostatic Sleep Switch , 2016, Nature.

[250]  M Heisenberg,et al.  Behavior‐dependent activity labeling in the central complex of Drosophila during controlled visual stimulation , 1994, The Journal of comparative neurology.

[251]  Keith R. Murphy,et al.  Author response: Postprandial sleep mechanics in Drosophila , 2016 .

[252]  Shigang Yue,et al.  Author response: A decentralised neural model explaining optimal integration of navigational strategies in insects , 2020 .

[253]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[254]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[255]  Gero Miesenböck,et al.  Neuronal Machinery of Sleep Homeostasis in Drosophila , 2014, Neuron.

[256]  Simon Benhamou,et al.  How to find one's way in the labyrinth of path integration models , 1995 .

[257]  Simon Benhamou,et al.  Spatial memory in large scale movements: Efficiency and limitation of the egocentric coding process , 1990 .

[258]  Chris Q Doe,et al.  Author response: Temporal identity establishes columnar neuron morphology, connectivity, and function in a Drosophila navigation circuit , 2019 .

[259]  Uri Hasson,et al.  Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks , 2019, Neuron.

[260]  Leslie C Griffith,et al.  Daily rhythms in locomotor circuits in Drosophila involve PDF. , 2013, Journal of neurophysiology.

[261]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[262]  Ting Zhao,et al.  NeuTu: Software for Collaborative, Large-Scale, Segmentation-Based Connectome Reconstruction , 2018, Front. Neural Circuits.

[263]  Talmo D. Pereira,et al.  The neural basis for a persistent internal state in Drosophila females , 2020, bioRxiv.

[264]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[265]  D. Nässel,et al.  Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons , 2004, Cell and Tissue Research.

[266]  Aldo A. Faisal,et al.  Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off , 2016, bioRxiv.

[267]  Anthony M. Zador,et al.  A critique of pure learning and what artificial neural networks can learn from animal brains , 2019, Nature Communications.

[268]  Michael B. Reiser,et al.  Spatial readout of visual looming in the central brain of Drosophila , 2020, eLife.

[269]  Richard H R Hahnloser,et al.  Double-ring network model of the head-direction system. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[270]  Thomas Labhart,et al.  Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila , 2016, The Journal of Neuroscience.

[271]  Hokto Kazama,et al.  A Multi-regional Network Encoding Heading and Steering Maneuvers in Drosophila , 2020, Neuron.

[272]  Marta Zlatic,et al.  Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva , 2018, eLife.

[273]  Chris Q Doe,et al.  Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex , 2017, Development.

[274]  Yisheng He,et al.  Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex , 2013, The Journal of comparative neurology.

[275]  T. Tanimura,et al.  Sugar intake elicits a small-scale search behavior in flies and honey bees that involves capabilities found in large-scale navigation , 2017, bioRxiv.

[276]  Roland Strauss,et al.  A spiking network for spatial memory formation: Towards a fly-inspired ellipsoid body model , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[277]  T. Collett,et al.  Spatial Memory in Insect Navigation , 2013, Current Biology.

[278]  Misha B. Ahrens,et al.  Glia Accumulate Evidence that Actions Are Futile and Suppress Unsuccessful Behavior , 2019, Cell.

[279]  T. Holy,et al.  Morning and Evening Circadian Pacemakers Independently Drive Premotor Centers via a Specific Dopamine Relay , 2018, Neuron.

[280]  M. Dickinson,et al.  Flying Drosophila Orient to Sky Polarization , 2012, Current Biology.

[281]  Gregory S.X.E. Jefferis,et al.  Automated Reconstruction of a Serial-Section EM Drosophila Brain with Flood-Filling Networks and Local Realignment , 2019, bioRxiv.

[282]  R. Ritzmann,et al.  Central-Complex Control of Movement in the Freely Walking Cockroach , 2015, Current Biology.

[283]  Rhiannon Jeans,et al.  A Paradoxical Kind of Sleep in Drosophila melanogaster , 2020, Current Biology.

[284]  Xiaojun Xie,et al.  Author response: The laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections , 2017 .

[285]  Eric J. Warrant,et al.  Neural coding underlying the cue preference for celestial orientation , 2015, Proceedings of the National Academy of Sciences.

[286]  Juan Huang,et al.  Author response: Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila , 2017 .

[287]  Andrew M. Saxe,et al.  If deep learning is the answer, what is the question? , 2020, Nature Reviews Neuroscience.

[288]  John Hallam,et al.  Neural network approach to path integration for homing navigation , 2000 .

[289]  Barbara Webb,et al.  Mushroom Bodies Are Required for Learned Visual Navigation, but Not for Innate Visual Behavior, in Ants , 2020, Current Biology.

[290]  S. Wada,et al.  Spezielle randzonale ommatidien der fliegen (diptera : brachycera): architektur und verteilung in den komplexauaen , 1974, Zeitschrift für Morphologie der Tiere.

[291]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[292]  D. Tank,et al.  Persistent neural activity: prevalence and mechanisms , 2004, Current Opinion in Neurobiology.

[293]  Keith R Shockley,et al.  Multiple mechanisms limit the duration of wakefulness in Drosophila brain. , 2006, Physiological genomics.

[294]  Mark Johnson,et al.  Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango , 2017, Neuron.

[295]  Marie P Suver,et al.  Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila , 2012, Current Biology.

[296]  Thomas F. Mathejczyk,et al.  Heading choices of flying Drosophila under changing angles of polarized light , 2019, Scientific Reports.

[297]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[298]  Jesse Isaacman-Beck,et al.  SPARC: a method to genetically manipulate precise proportions of cells , 2019 .

[299]  James P. Bohnslav,et al.  A faithful internal representation of walking movements in the Drosophila visual system , 2016, Nature Neuroscience.

[300]  Simon Benhamou,et al.  On systems of reference involved in spatial memory , 1997, Behavioural Processes.

[301]  Zach Werkhoven,et al.  A neural circuit basis for context-modulation of individual locomotor behavior , 2019, bioRxiv.

[302]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[303]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[304]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[305]  Paul F. M. J. Verschure,et al.  A model for the neuronal substrate of dead reckoning and memory in arthropods: a comparative computational and behavioral study , 2008, Theory in Biosciences.

[306]  Cheng Lyu,et al.  Quantitative Predictions Orchestrate Visual Signaling in Drosophila , 2017, Cell.

[307]  Rachel I. Wilson,et al.  Neural circuit mechanisms for steering control in walking Drosophila , 2020, bioRxiv.

[308]  Uwe Homberg,et al.  Evolution of the central complex in the arthropod brain with respect to the visual system. , 2008, Arthropod structure & development.

[309]  Js Jones,et al.  Long-Distance Migration of Drosophila , 1982, The American Naturalist.

[310]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[311]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[312]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[313]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[314]  Jeffrey M. Donlea Roles for sleep in memory: insights from the fly , 2019, Current Opinion in Neurobiology.

[315]  Jan Wessnitzer,et al.  Evolving a Neural Model of Insect Path Integration , 2007, Adapt. Behav..

[316]  R. Wehner,et al.  The ontogeny of foragwehaviour in desert ants, Cataglyphis bicolor , 2004 .

[317]  A. Cheung,et al.  Which coordinate system for modelling path integration? , 2010, Journal of theoretical biology.

[318]  Mehrab N Modi,et al.  The Drosophila Mushroom Body: From Architecture to Algorithm in a Learning Circuit. , 2020, Annual review of neuroscience.

[319]  Ned T. Sahin,et al.  Dynamic circuit motifs underlying rhythmic gain control, gating and integration , 2014, Nature Neuroscience.

[320]  U Homberg,et al.  Immunocytochemistry of GABA in the central complex of the locust Schistocerca gregaria: Identification of immunoreactive neurons and colocalization with neuropeptides , 1999, The Journal of comparative neurology.

[321]  Alex J. Cope,et al.  A computational model of the integration of landmarks and motion in the insect central complex , 2017, PloS one.

[322]  Rachel I. Wilson,et al.  A Neural Network for Wind-Guided Compass Navigation , 2020, Neuron.

[323]  Razvan Pascanu,et al.  Vector-based navigation using grid-like representations in artificial agents , 2018, Nature.

[324]  Michael H Dickinson,et al.  The functional organization of descending sensory-motor pathways in Drosophila , 2017, bioRxiv.

[325]  Roland Strauss,et al.  Visual Targeting of Motor Actions in Climbing Drosophila , 2010, Current Biology.

[326]  B. Webb Neural mechanisms for prediction: do insects have forward models? , 2004, Trends in Neurosciences.

[327]  Dwight E. Bergles,et al.  Neuromodulators signal through astrocytes to alter neural circuit activity and behavior , 2016, Nature.

[328]  N. J. Allen,et al.  Glia as architects of central nervous system formation and function , 2018, Science.

[329]  Meghana Holla,et al.  A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila , 2018, Neuron.

[330]  Lev S Tsimring,et al.  Dynamics-based sequential memory: winnerless competition of patterns. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[331]  Nathan W. Gouwens,et al.  Signal Propagation in Drosophila Central Neurons , 2009, The Journal of Neuroscience.

[332]  Poramate Manoonpong,et al.  A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents , 2017, Front. Neurorobot..

[333]  J. L. Williams,et al.  Anatomical studies of the insect central nervous system: A ground‐plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera) , 2009 .

[334]  Thomas S Collett,et al.  Path integration: how details of the honeybee waggle dance and the foraging strategies of desert ants might help in understanding its mechanisms , 2019, Journal of Experimental Biology.

[335]  T. Préat,et al.  Neuroanatomy: Brain asymmetry and long-term memory , 2004, Nature.

[336]  Gerald M. Rubin,et al.  The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster , 1991, Cell and Tissue Research.

[337]  Emanuel Todorov,et al.  Cosine Tuning Minimizes Motor Errors , 2002, Neural Computation.

[338]  Christopher A. Buneo,et al.  Direct visuomotor transformations for reaching , 2002, Nature.

[339]  Bart R. H. Geurten,et al.  Saccadic body turns in walking Drosophila , 2014, Front. Behav. Neurosci..

[340]  Uwe Homberg,et al.  Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria) , 1997, Cell and Tissue Research.

[341]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[342]  M Egelhaaf,et al.  Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. , 1993, Journal of neurophysiology.

[343]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[344]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[345]  Anmo J Kim,et al.  Cellular evidence for efference copy in Drosophila visuomotor processing , 2015, Nature Neuroscience.

[346]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[347]  Allan Wong,et al.  Author response: Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila , 2019 .

[348]  Jean-René Martin,et al.  Neuropeptides in the Drosophila central complex in modulation of locomotor behavior , 2010, Journal of Experimental Biology.

[349]  Martin Egelhaaf,et al.  Prototypical Components of Honeybee Homing Flight Behavior Depend on the Visual Appearance of Objects Surrounding the Goal , 2012, Front. Behav. Neurosci..

[350]  Steven W. Flavell,et al.  Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit , 2015, Cell.

[351]  Paola Patella,et al.  Functional Maps of Mechanosensory Features in the Drosophila Brain , 2018, Current Biology.

[352]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[353]  G. Tononi,et al.  Electrophysiological Correlates of Rest and Activity in Drosophila melanogaster , 2002, Current Biology.

[354]  Takako Morimoto,et al.  Dopamine modulates the optomotor response to unreliable visual stimuli in Drosophila melanogaster , 2019, The European journal of neuroscience.

[355]  B. Webb,et al.  Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox) , 2012 .

[356]  Erik M. Jorgensen,et al.  CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons , 2008, The Journal of cell biology.

[357]  Demis Hassabis,et al.  A model of egocentric to allocentric understanding in mammalian brains , 2020, bioRxiv.

[358]  A. J. Pollack,et al.  Neural Activity in the Central Complex of the Insect Brain Is Linked to Locomotor Changes , 2010, Current Biology.

[359]  Vivek Jayaraman,et al.  Building a functional connectome of the Drosophila central complex , 2018, eLife.

[360]  Craig Montell,et al.  Differential regulation of the Drosophila sleep homeostat by circadian and arousal inputs , 2019, eLife.

[361]  Larry Lindsey,et al.  High-precision automated reconstruction of neurons with flood-filling networks , 2017, Nature Methods.

[362]  Mandyam V. Srinivasan Going with the flow: a brief history of the study of the honeybee’s navigational ‘odometer’ , 2014, Journal of Comparative Physiology A.

[363]  Michael E Hasselmo,et al.  Persistent Firing Supported by an Intrinsic Cellular Mechanism in a Component of the Head Direction System , 2009, The Journal of Neuroscience.

[364]  J. Armstrong,et al.  Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. , 1999, Journal of neurobiology.

[365]  Allen Cheung,et al.  Principles of Insect Path Integration , 2018, Current Biology.

[366]  Srinivas C. Turaga,et al.  Constraining computational models using electron microscopy wiring diagrams , 2019, Current Opinion in Neurobiology.

[367]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[368]  Jay Hirsh,et al.  A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila , 2010, PloS one.

[369]  Seth M Tomchik,et al.  Postprandial sleep mechanics in Drosophila , 2016, eLife.

[370]  Thierry Hoinville,et al.  Optimal multiguidance integration in insect navigation , 2018, Proceedings of the National Academy of Sciences.

[371]  O. Trujillo-Cenóz,et al.  Some aspects of the structural organization of the medulla in muscoid flies. , 1969, Journal of ultrastructure research.

[372]  Christopher J. Cueva,et al.  Emergence of functional and structural properties of the head direction system by optimization of recurrent neural networks , 2019, ICLR.

[373]  Ko-Fan Chen,et al.  A Wake-Promoting Circadian Output Circuit in Drosophila , 2018, Current Biology.

[374]  Bruce R. Rosen,et al.  The Mind of a Mouse , 2020, Cell.

[375]  L. Kahsai,et al.  Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters , 2011, The Journal of comparative neurology.

[376]  U. Homberg,et al.  Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry , 1991, The Journal of comparative neurology.

[377]  Craig Montell,et al.  Author response: Differential regulation of the Drosophila sleep homeostat by circadian and arousal inputs , 2019 .

[378]  Evan Z. Macosko,et al.  A Single-Cell Atlas of Cell Types, States, and Other Transcriptional Patterns from Nine Regions of the Adult Mouse Brain , 2018, bioRxiv.

[379]  R. Vickerstaff,et al.  Published by The Company of Biologists 2005 doi:10.1242/jeb.01772 Evolving neural models of path integration , 2022 .

[380]  Michael B. Reiser,et al.  Behavioral state modulates the ON visual motion pathway of Drosophila , 2017, Proceedings of the National Academy of Sciences.

[381]  E. Hafen,et al.  Drosophila Egg-Laying Site Selection as a System to Study Simple Decision-Making Processes , 2008, Science.

[382]  B. Webb,et al.  Optimal cue integration in ants , 2015, Proceedings of the Royal Society B: Biological Sciences.

[383]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[384]  Roland Strauss,et al.  A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons , 2016, Scientific Reports.

[385]  Uwe Homberg,et al.  Integration of celestial compass cues in the central complex of the locust brain , 2018, Journal of Experimental Biology.

[386]  Qili Liu,et al.  Two Dopaminergic Neurons Signal to the Dorsal Fan-Shaped Body to Promote Wakefulness in Drosophila , 2012, Current Biology.

[387]  Gregory S.X.E. Jefferis,et al.  Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways , 2015, Current Biology.

[388]  Liam Paninski,et al.  Rapid mesoscale volumetric imaging of neural activity with synaptic resolution , 2020, Nature Methods.

[389]  Andrew M. M. Matheson,et al.  Encoding and control of airflow orientation by a set of Drosophila fan-shaped body neurons , 2020 .

[390]  Kei Ito,et al.  Identification of a dopamine pathway that regulates sleep and arousal in Drosophila , 2012, Nature Neuroscience.