Validity Measures for the Fuzzy Cluster Analysis of Orientations

Fuzzy K-means clustering can be applied to the automatic identification of sets in discontinuity data after suitable adaptation of the algorithm. To establish the number of clusters in a data set, modified versions of the validity measures of Gath and Geva (1989), Xie-Beni (1991) and Fukuyama-Sugeno are presented in this paper.

[1]  G. S. Watson,et al.  The Statistics of Orientation Data , 1966, The Journal of Geology.

[2]  R. J. Shanley,et al.  Delineation and analysis of clusters in orientation data , 1976 .

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[7]  R. E. Hammah,et al.  Fuzzy cluster algorithm for the automatic identification of joint sets , 1998 .

[8]  R. Hammah,et al.  On Distance Measures for the Fuzzy K-means Algorithm for Joint Data , 1999 .