Roundoff error analysis of algorithms based on Krylov subspace methods

We study the roundoff error propagation in an algorithm which computes the orthonormal basis of a Krylov subspace with Householder orthonormal matrices. Moreover, we analyze special implementations of the classical GMRES algorithm, and of the Full Orthogonalization Method. These techniques approximate the solution of a large sparse linear system of equations on a sequence of Krylov subspaces of small dimension. The roundoff error analyses show upper bounds for the error affecting the computed approximated solutions.

[1]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[2]  P. K. W. Vinsome,et al.  Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .

[3]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[4]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[7]  M. Rozložník,et al.  Numerical stability of GMRES , 1995 .

[8]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[9]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[10]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[11]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[12]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[13]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[16]  J. Strikwerda A Generalized Conjugate Gradient Method for Non-Symmetric Systems of Linear Equations. , 1981 .

[17]  O. Axelsson Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .

[18]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .