Projection-Based Local and Global Lipschitz Moduli of the Optimal Value in Linear Programming

In this paper, we use a geometrical approach to sharpen a lower bound given in [5] for the Lipschitz modulus of the optimal value of (finite) linear programs under tilt perturbations of the objective function. The key geometrical idea comes from orthogonally projecting general balls on linear subspaces. Our new lower bound provides a computable expression for the exact modulus (as far as it only depends on the nominal data) in two important cases: when the feasible set has extreme points and when we deal with the Euclidean norm. In these two cases, we are able to compute or estimate the global Lipschitz modulus of the optimal value function in different perturbations frameworks.

[1]  Roger J.-B. Wets,et al.  On the continuity of the value of a linear program and of related polyhedral-valued multifunctions , 1982 .

[2]  F. Nožička Theorie der linearen parametrischen Optimierung , 1974 .

[3]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings: A View from Variational Analysis , 2009 .

[4]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[5]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[6]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[7]  Roger J.-B. Wets,et al.  Lifting projections of convex polyhedra. , 1969 .

[8]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[9]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[10]  Elijah Polak,et al.  Semi-Infinite Optimization , 1997 .

[11]  María J. Cánovas,et al.  Lipschitz Modulus of the Optimal Value in Linear Programming , 2018, Journal of Optimization Theory and Applications.

[12]  C. Kanzow,et al.  On the Minimum Norm Solution of Linear Programs , 2003 .

[13]  María J. Cánovas,et al.  Calmness of the Optimal Value in Linear Programming , 2018, SIAM J. Optim..

[14]  J. Renegar Some perturbation theory for linear programming , 1994, Math. Program..

[15]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[16]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[17]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[18]  D. Klatte Book review: Implicit Functions and Solution Mappings:A View from Variational Analysis. Second Edition. By A. L. Dontchev and R. T. Rockafellar. Springer, New York, 2014 , 2015 .