A node-depth phylogenetic-based artificial immune system for multi-objective Network Design Problems

Abstract Network Design Problems (NDP) constitute a traditional class of combinatorial optimization problems. They usually rely on finding an optimal tree on a graph that respects the particular constraints of the problem at hand. When using evolutionary algorithms to solve NDP, one can use specific encodings to represent a tree. A newly proposed tree encoding in the literature is the Node-depth Phylogenetic-based encoding (NPE), which possess small time and space complexity, among other desirable characteristics. In this work, we propose the first metaheuristic on the literature that implements the NPE, the Node-depth Phylogenetic-based Non-dominated Sorting Artificial Immune System (NPE-NSAIS). We assess the quality of the proposed algorithm by solving a bi-objective NDP, the Minimum-Cost Bounded-Error Calibration Tree problem (MBCT). Our results reveal that the NPE-NSAIS outperforms the state-of-the-art algorithm for the MBCT. Moreover, we show that the NPE-NSAIS outperforms three other NSAIS algorithms that employ different encodings, the NSGA-II, and the SPEA2.

[1]  Laura Marie Feeney,et al.  An Energy Consumption Model for Performance Analysis of Routing Protocols for Mobile Ad Hoc Networks , 2001, Mob. Networks Appl..

[2]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Node-Depth Encoding for Evolutionary Algorithms Applied to Network Design , 2004, GECCO.

[3]  Alexandre C. B. Delbem,et al.  Efficient Forest Data Structure for Evolutionary Algorithms Applied to Network Design , 2012, IEEE Transactions on Evolutionary Computation.

[4]  Paulius Micikevicius,et al.  A New Encoding for Labeled Trees Employing a Stack and a Queue , 2002 .

[5]  Franz Rothlauf,et al.  The node-depth encoding: analysis and application to the bounded-diameter minimum spanning tree problem , 2008, GECCO '08.

[6]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[7]  S. Picciotto How to encode a tree , 2017, 1710.08463.

[8]  David K. Smith,et al.  Recent Advances in the Study of the Dandelion Code, Happy Code, and Blob Code Spanning Tree Representations , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[9]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[10]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[11]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[12]  Yacine Challal,et al.  Energy efficiency in wireless sensor networks: A top-down survey , 2014, Comput. Networks.

[13]  Hüseyin Akcan,et al.  On the complexity of energy efficient pairwise calibration in embedded sensors , 2013, Appl. Soft Comput..

[14]  David E. Culler,et al.  Calibration as parameter estimation in sensor networks , 2002, WSNA '02.

[15]  Alexandre C. B. Delbem,et al.  Permutation-based Recombination Operator to Node-depth Encoding , 2016, ICCS.

[16]  Franz Rothlauf,et al.  Bad Codings and the Utility of Well-Designed Genetic Algorithms , 2000, GECCO.

[17]  Franz Rothlauf,et al.  The Link and Node Biased Encoding Revisited: Bias and Adjustment of Parameters , 2001, EvoWorkshops.

[18]  Gregory J. Pottie,et al.  Sensor network data fault types , 2007, TOSN.

[19]  Pabitra Mohan Khilar,et al.  Fault Diagnosis in Wireless Sensor Networks: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  Franz Rothlauf,et al.  Network Random KeysA Tree Representation Scheme for Genetic and Evolutionary Algorithms , 2002, Evolutionary Computation.

[22]  F. Burnet The clonal selection theory of acquired immunity , 1959 .

[23]  Jonas Krause,et al.  A Survey of Swarm Algorithms Applied to Discrete Optimization Problems , 2013 .

[24]  David K. Smith,et al.  From the Dandelion Code to the Rainbow code: a class of bijective spanning tree representations with linear complexity and bounded locality , 2006, IEEE Transactions on Evolutionary Computation.

[25]  Charles C. Palmer,et al.  Representing trees in genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[26]  Doheon Lee,et al.  Recent advances in immunological inspired computation , 2017, Eng. Appl. Artif. Intell..

[27]  K. Rajewsky Clonal selection and learning in the antibody system , 1996, Nature.

[28]  A. Cayley A theorem on trees , 2009 .

[29]  Deborah Estrin,et al.  A Collaborative Approach to In-Place Sensor Calibration , 2003, IPSN.

[30]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[31]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[32]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[33]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[34]  Francis Suraweera,et al.  Encoding Graphs for Genetic Algorithms: An Investigation Using the Minimum Spanning Tree Problem , 1994, Evo Workshops.

[35]  Roger L. Wainwright,et al.  Determinant Factorization: A New Encoding Scheme for Spanning Trees Applied to the Probabilistic Minimum Spanning Tree Problem , 1995, ICGA.

[36]  Lawrence Davis,et al.  A Genetic Algorithm for Survivable Network Design , 1993, International Conference on Genetic Algorithms.

[37]  Alexandre C. B. Delbem,et al.  Node-depth phylogenetic-based encoding, a spanning-tree representation for evolutionary algorithms. part I: Proposal and properties analysis , 2016, Swarm Evol. Comput..

[38]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[39]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[40]  Franz Rothlauf,et al.  On the Bias and Performance of the Edge-Set Encoding , 2009, IEEE Transactions on Evolutionary Computation.

[41]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2010, GECCO '12.

[42]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[43]  Andreas T. Ernst,et al.  Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree , 2001, J. Heuristics.

[44]  Saverio Caminiti,et al.  String Coding of Trees with Locality and Heritability , 2005, COCOON.

[45]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.