Experimental demonstration of the modification of the resonances of a simplified self-sustained wind instrument through modal active control.

This paper reports the experimental results of modifying the resonances of wind instruments using modal active control. Resonances of a simplified bass clarinet without holes (a cylindrical tube coupled to a bass clarinet mouthpiece including a reed) are adjusted either in frequency or in damping in order to modify its playing properties (pitch, strength of the harmonics of the sound, transient behaviour). This is achieved using a control setup consisting of a co-located loudspeaker and microphone linked to a computer with data acquisition capabilities. Software on the computer implements an observer (which contains a model of the system) and a controller. Measuring and adjusting the transfer function between the speaker and microphone of the control setup enables modifications of the input impedance and the radiated sound of the instrument.

[1]  Gregory J. Sandell A Library of Orchestral Instrument Spectra , 1991, ICMC.

[2]  D. Luenberger An introduction to observers , 1971 .

[3]  David B. Sharp,et al.  Simulations of modal active control applied to the self-sustained oscillations of the clarinet , 2014 .

[4]  Henri Boutin Méthodes de contrôle actif d'instruments de musique. Cas de la lame de xylophone et du violon. , 2011 .

[5]  Edgar Berdahl,et al.  Feedback control of acoustic musical instruments: collocated control using physical analogs. , 2012, The Journal of the Acoustical Society of America.

[6]  Adrien Mamou-Mani,et al.  Investigating the consistency of woodwind instrument manufacturing by comparing five nominally identical oboes. , 2012, The Journal of the Acoustical Society of America.

[7]  Dennis S. Bernstein,et al.  Modeling, identification, and feedback control of noise in an acoustic duct , 1996, IEEE Trans. Control. Syst. Technol..

[8]  Mark Richardson,et al.  PARAMETER ESTIMATION FROM FREQUENCY RESPONSE MEASUREMENTS USING RATIONAL FRACTION POLYNOMIALS (TWENTY YEARS OF PROGRESS) , 1982 .

[9]  Baptiste Chomette,et al.  Active Control of String Instruments using Xenomai , 2013 .

[10]  J. W. Gordon,et al.  Perceptual effects of spectral modifications on musical timbres , 1978 .

[11]  Kurt Adler The Mechanics of Musical Instruments , 1965 .

[13]  Philippe Dépincé,et al.  User-centered design by genetic algorithms: Application to brass musical instrument optimization , 2007, Eng. Appl. Artif. Intell..

[14]  R. T. Schumacher,et al.  ON THE OSCILLATIONS OF MUSICAL-INSTRUMENTS , 1983 .

[15]  Jean Guérard Modelisation numerique et simulation experimentale de systemes acoustique. Application aux instruments de musique , 1998 .

[16]  Christophe Vergez,et al.  Oscillation threshold of a clarinet model: a numerical continuation approach. , 2012, The Journal of the Acoustical Society of America.

[17]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[18]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[19]  Jean-François Petiot,et al.  The Relationship Between Bore Resonance Frequencies and Playing Frequencies in Trumpets , 2014 .

[21]  Christophe Vergez,et al.  Interaction of reed and acoustic resonator in clarinetlike systems. , 2008, The Journal of the Acoustical Society of America.

[22]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[23]  Baptiste Chomette,et al.  Semi-adaptive modal control of on-board electronic boards using an identification method , 2008 .