Analysis of opa1 isoforms expression and apoptosis regulation in autosomal dominant optic atrophy (ADOA) patients with mutations in the opa1 gene

[1]  Prashant Mishra,et al.  Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. , 2014, Cell metabolism.

[2]  H. Ljunggren,et al.  Hantavirus-infection Confers Resistance to Cytotoxic Lymphocyte-Mediated Apoptosis , 2013, PLoS pathogens.

[3]  C. Blackstone,et al.  N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress , 2013, Brain Research.

[4]  N. Boddaert,et al.  The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. , 2012, Brain : a journal of neurology.

[5]  Thomas Landes,et al.  OPA1 (dys)functions. , 2010, Seminars in cell & developmental biology.

[6]  P. Belenguer,et al.  The BH3‐only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms , 2010, EMBO reports.

[7]  P. Heiduschka,et al.  Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy. , 2010, Investigative ophthalmology & visual science.

[8]  D. Milea,et al.  OPA1-associated disorders: phenotypes and pathophysiology. , 2009, The international journal of biochemistry & cell biology.

[9]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[10]  A. Federico,et al.  Apoptosis in CADASIL: An in vitro study of lymphocytes and fibroblasts from a cohort of Italian patients , 2009, Journal of cellular physiology.

[11]  M. Bortolozzi,et al.  A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. , 2008, Human molecular genetics.

[12]  Mark H Ellisman,et al.  Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. , 2008, Molecular cell.

[13]  R. Youle,et al.  OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. , 2008, Brain : a journal of neurology.

[14]  A. M. van der Bliek,et al.  Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage , 2007, The Journal of cell biology.

[15]  V. Mils,et al.  Effects of OPA1 mutations on mitochondrial morphology and apoptosis: Relevance to ADOA pathogenesis , 2007, Journal of cellular physiology.

[16]  G. Lenaers,et al.  OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis , 2007, Cell Death and Differentiation.

[17]  S. Duvezin-Caubet,et al.  Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology* , 2006, Journal of Biological Chemistry.

[18]  S. Beck,et al.  A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. , 2006, Brain : a journal of neurology.

[19]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[20]  R. D'Hooge,et al.  Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling , 2006, Cell.

[21]  K. Mihara,et al.  Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 , 2006, The EMBO journal.

[22]  V. Mils,et al.  Mitochondrial dynamics and disease, OPA1. , 2006, Biochimica et biophysica acta.

[23]  A. Federico,et al.  A novel mutation producing premature termination codon at the OPA1 gene causes autosomal dominant optic atrophy , 2006, Journal of Neurology.

[24]  L. Scorrano,et al.  OPA1 requires mitofusin 1 to promote mitochondrial fusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Youle,et al.  Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. , 2004, Molecular biology of the cell.

[26]  A. M. van der Bliek,et al.  Loss of the Intermembrane Space Protein Mgm1/OPA1 Induces Swelling and Localized Constrictions along the Lengths of Mitochondria* , 2004, Journal of Biological Chemistry.

[27]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[28]  G. Lenaers,et al.  OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. , 2002, Molecular genetics and metabolism.

[29]  B. Lorenz,et al.  Mutation spectrum and splicing variants in the OPA1 gene , 2001, Human Genetics.

[30]  Steven J. Sollott,et al.  Reactive Oxygen Species (Ros-Induced) Ros Release , 2000, The Journal of experimental medicine.

[31]  J. Grosgeorge,et al.  Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy , 2000, Nature Genetics.

[32]  A. Federico,et al.  Apoptotic response and cell cycle transition in ataxia telangiectasia cells exposed to oxidative stress. , 2000, Life sciences.

[33]  Margaret A. Johnson,et al.  Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina , 1999, The British journal of ophthalmology.

[34]  M. Votruba,et al.  Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. , 1998, Journal of medical genetics.

[35]  C. Franceschi,et al.  The highly reducing sugar 2-deoxy-D-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. , 1998, Biochemical and biophysical research communications.

[36]  A. Federico,et al.  Increased apoptotic response to 2-deoxy-d-ribose in ataxia-telangiectasia , 1996, Journal of the Neurological Sciences.

[37]  I Nicoletti,et al.  A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. , 1991, Journal of immunological methods.

[38]  L. Klinken,et al.  HISTOPATHOLOGY OF EYE, OPTIC NERVE AND BRAIN IN A CASE OF DOMINANT OPTIC ATROPHY , 1983, Acta ophthalmologica.

[39]  V. Smith,et al.  A clinicopathologic study of autosomal dominant optic atrophy. , 1979, American journal of ophthalmology.

[40]  A. Bøyum Separation of lymphocytes, granulocytes, and monocytes from human blood using iodinated density gradient media. , 1984, Methods in enzymology.