The λΠ-calculus Modulo as a Universal Proof Language
暂无分享,去创建一个
Olivier Hermant | Quentin Carbonneaux | O. Hermant | Mathieu Boespug | Mathieu Boespflug | Quentin Carbonneaux
[1] Sam Lindley,et al. Normalisation by evaluation in the compilation of typed functional programming languages , 2005 .
[2] Frank Pfenning,et al. System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.
[3] Mathieu Boespflug. Conversion by Evaluation , 2010, PADL.
[4] Denis Cousineau,et al. Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo , 2007, TLCA.
[5] N. G. de Bruijn,et al. A plea for weaker frameworks , 1991 .
[6] Cody Roux,et al. Size-based termination: Semantics and generalizations. (Terminaison à base de tailles: Sémantique et généralisations) , 2011 .
[7] Guillaume Burel,et al. CoqInE: Translating the Calculus of Inductive Constructions into the λΠ-calculus Modulo , 2012, PxTP.
[8] Mathieu Boespflug,et al. Conception d'un noyau de vérification de preuves pour le λΠ-calcul modulo , 2011 .
[9] Ulf Norell,et al. Dependently typed programming in Agda , 2009, TLDI '09.
[10] Thorsten Altenkirch,et al. A Partial Type Checking Algorithm for Type: Type , 2011, Electron. Notes Theor. Comput. Sci..
[11] Benjamin Grégoire,et al. Full Reduction at Full Throttle , 2011, CPP.
[12] Olivier Danvy,et al. Pragmatics of Type-Directed Partial Evaluation , 1996, Dagstuhl Seminar on Partial Evaluation.
[13] Lawrence C. Paulson,et al. Isabelle: The Next Seven Hundred Theorem Provers , 1988, CADE.
[14] Luís Pinto,et al. Type-based termination of recursive definitions , 2004, Mathematical Structures in Computer Science.
[15] Thierry Coquand,et al. An Algorithm for Type-Checking Dependent Types , 1996, Sci. Comput. Program..
[16] Gilles Dowek,et al. A Simple Proof That Super-Consistency Implies Cut Elimination , 2007, RTA.
[17] Benjamin Grégoire,et al. A compiled implementation of strong reduction , 2002, ICFP '02.
[18] Hendrik Pieter Barendregt,et al. Introduction to generalized type systems , 1991, Journal of Functional Programming.
[19] Gilles Dowek,et al. Proof Normalization for a First-Order Formulation of Higher-Order Logic , 1997, TPHOLs.
[20] Furio Honsell,et al. A framework for defining logics , 1993, JACM.
[21] Morten Heine Sørensen,et al. Domain-free pure type systems , 2000, J. Funct. Program..
[22] Michael Zeller,et al. Signature Compilation for the Edinburgh Logical Framework , 2008, Electron. Notes Theor. Comput. Sci..
[23] Zhong Shao,et al. Certified Programs and Proofs - First International Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings , 2011, CPP.
[24] Andreas Abel,et al. MiniAgda: Integrating Sized and Dependent Types , 2010, PAR@ITP.
[25] Dale Miller. A Proposal for Broad Spectrum Proof Certificates , 2011, CPP.
[26] Andrzej Filinski,et al. A Denotational Account of Untyped Normalization by Evaluation , 2003 .