Computer Simulations of Nanometer-Scale Indentation and Friction

Engines and other machines with moving parts are often limited in their design and operational lifetime by friction and wear. This limitation has motivated the study of fundamental tribological processes with the ultimate aim of controlling and minimizing their impact. The recent development of miniature apparatus, such as microelectromechanical systems (MEMS) and nanometer-scale devices, has increased interest in atomic-scale friction, which has been found to, in some cases, be due to mechanisms that are distinct from the mechanisms that dominate in macroscale friction. Presented in this chapter is a review of computational studies of tribological processes at the atomic and nanometer scale. In particular, a review of the findings of computational studies of nanometer-scale indentation, friction and lubrication is presented, along with a review of the salient computational methods that are used in these studies, and the conditions under which they are best applied.

[1]  D. Dowson History of Tribology , 1979 .

[2]  A. Stoneham,et al.  How do they stick together? The statics and dynamics of interfaces , 1993 .

[3]  G. Hadziioannou,et al.  Inhomogeneities in sheared ultrathin lubricating films , 1996 .

[4]  Donald W. Brenner,et al.  Atomistic Simulations of Friction at Sliding Diamond Interfaces , 1993 .

[5]  Seizo Morita,et al.  Localized Fluctuation of a Two-Dimensional Atomic-Scale Friction , 1996 .

[6]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[7]  David B. Graves,et al.  New C–F interatomic potential for molecular dynamics simulation of fluorocarbon film formation , 2000 .

[8]  Shaoyi Jiang,et al.  Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111) , 2002 .

[9]  Richard T. Williams,et al.  Lateral and friction forces originating during force microscope scanning of ionic surfaces , 1995 .

[10]  I. L. Singer,et al.  Fundamentals of friction : macroscopic and microscopic processes , 1992 .

[11]  E. Tosatti,et al.  Microscopic interaction between a gold tip and a Pb(110) surface , 1993 .

[12]  Persson,et al.  Surface resistivity and vibrational damping in adsorbed layers. , 1991, Physical review. B, Condensed matter.

[13]  J. Zimmerman,et al.  Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation , 2003 .

[14]  J. M. Ruitenbeek,et al.  Shell effects in alkali metal nanowires , 2001 .

[15]  Nicolás Agraït,et al.  Plastic Deformation in Nanometer Scale Contacts , 1996 .

[16]  B. Persson Theory of Friction: Friction Dynamics for Boundary Lubricated Surfaces , 1997 .

[17]  Jacqueline Krim,et al.  SUPERCONDUCTIVITY-DEPENDENT SLIDING FRICTION , 1998 .

[18]  J. Harrison,et al.  Odd and even model self-assembled monolayers: links between friction and structure. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[19]  M. Müser,et al.  Frictional Drag Mechanisms between Polymer-Bearing Surfaces , 2001 .

[20]  Burnham,et al.  Probing the surface forces of monolayer films with an atomic-force microscope. , 1990, Physical review letters.

[21]  A. Volokitin,et al.  Noncontact friction between nanostructures , 2003 .

[22]  C. Joachim,et al.  Interpretation of AFM images: the graphite surface with a diamond tip , 1993 .

[23]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[24]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[25]  Robert W. Carpick,et al.  Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope , 1996 .

[26]  Donald W. Brenner,et al.  Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics , 1995 .

[27]  G. McClelland,et al.  Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip , 1988 .

[28]  B. Bhushan,et al.  Sublimed C60 films for tribology , 1993 .

[29]  Shaoyi Jiang,et al.  Dynamic simulations of adhesion and friction in chemical force microscopy. , 2002, Journal of the American Chemical Society.

[30]  Ali Erdemir,et al.  Tribology of Diamond, Diamond-like Carbon and Related Films , 2000 .

[31]  G. A. Tomlinson B.Sc.,et al.  CVI. A molecular theory of friction , 1929 .

[32]  Pedro A. Serena,et al.  Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top , 1995 .

[33]  J. Frenken,et al.  New views on surface melting obtained with STM and ion scattering , 1993 .

[34]  M. Yoshimura,et al.  Bundle structure and sliding of single-walled carbon nanotubes observed by frictional-force microscopy , 2001 .

[35]  S. Ciraci,et al.  ATOMIC-SCALE STUDY OF DRY SLIDING FRICTION , 1997 .

[36]  Susan B. Sinnott,et al.  MOLECULAR DYNAMICS OF CARBON NANOTUBULE PROXIMAL PROBE TIP-SURFACE CONTACTS , 1999 .

[37]  A. Volokitin,et al.  Resonant photon tunneling enhancement of the van der Waals friction. , 2003, Physical review letters.

[38]  S. Perry,et al.  Local packing environment strongly influences the frictional properties of mixed CH3- and CF3-terminated alkanethiol SAMs on Au(111). , 2005, Langmuir : the ACS journal of surfaces and colloids.

[39]  Smith,et al.  Multiscale simulation of loading and electrical resistance in silicon nanoindentation , 2000, Physical review letters.

[40]  Burnham,et al.  Work-function anisotropies as an origin of long-range surface forces. , 1992, Physical review letters.

[41]  Donald W. Brenner,et al.  Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces , 1992 .

[42]  J. Belak,et al.  Molecular Dynamics Simulation of Mechanical Deformation of Ultra-Thin Amorphous Carbon Films , 1995 .

[43]  S. Adelman,et al.  Generalized Langevin Equations and Many‐Body Problems in Chemical Dynamics , 2007 .

[44]  Judith A. Harrison,et al.  Compression- and Shear-Induced Polymerization in Model Diacetylene-Containing Monolayers , 2004 .

[45]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[46]  Nanostructure of Fluorocarbon Films Deposited on Polystyrene from Hyperthermal C3F5+ Ions , 2004 .

[47]  P. C. Clapp,et al.  Molecular dynamics simulation of stick-slip , 2001 .

[48]  K. Kaski,et al.  Mechanism of lubrication by a thin solid film on a metal surface , 1992 .

[49]  Calvin F. Quate,et al.  Improved atomic force microscope images using microcantilevers with sharp tips , 1990 .

[50]  M. Robbins,et al.  Origin of Stick-Slip Motion in Boundary Lubrication , 1990, Science.

[51]  Holyst,et al.  Simple model for dry friction. , 1994, Physical review. B, Condensed matter.

[52]  K. Katô,et al.  Volume increase phenomena in reciprocal scratching of polycarbonate studied by atomic force microscopy , 1995 .

[53]  Ernst Meyer,et al.  Nanoscience: Friction and Rheology on the Nanometer Scale , 1996 .

[54]  J. L. Costa-Krämer,et al.  Erratum to “Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top” [Surface Science 342 (1995) L1144] , 1996 .

[55]  Joyce,et al.  Mechanical relaxation of organic monolayer films measured by force microscopy. , 1992, Physical review letters.

[56]  J. Sokoloff,et al.  Theory of atomic level sliding friction between ideal crystal interfaces , 1992 .

[57]  D. Brenner,et al.  Diffusion on a self-assembled monolayer: molecular modeling of a bound + mobile lubricant. , 2006, The journal of physical chemistry. B.

[58]  M. Müser Nature of mechanical instabilities and their effect on kinetic friction. , 2002, Physical review letters.

[59]  M. Yoneya,et al.  Molecular dynamics simulations of sliding friction of Langmuir–Blodgett monolayers , 1996 .

[60]  Steven D. Kenny,et al.  Atomistic simulations of structural transformations of silicon surfaces under nanoindentation , 2004 .

[61]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[62]  Sokoloff Jb Possible nearly frictionless sliding for mesoscopic solids. , 1993 .

[63]  Jacqueline Krim,et al.  FRICTION AT THE ATOMIC SCALE , 1996 .

[64]  H. Lang,et al.  Frictional and atomic-scale study of C60 thin films by scanning force microscopy , 1994 .

[65]  Linda S. Schadler,et al.  Frictional anisotropy of oriented carbon nanotube surfaces , 2005 .

[66]  Yury Gogotsi,et al.  Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations , 1999 .

[67]  J. Harrison,et al.  Friction between Diamond Surfaces in the Presence of Small Third-Body Molecules , 1997 .

[68]  Pethica Comment on "Interatomic forces in scanning tunneling microscopy: Giant corrugations of the graphite surface" , 1986, Physical review letters.

[69]  J. Israelachvili Intermolecular and surface forces , 1985 .

[70]  G. Grest,et al.  Simulations of nanotribology with realistic probe tip models. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[71]  Hubert M. Pollock,et al.  Interpretation of force curves in force microscopy , 1993 .

[72]  Jee-Gong Chang,et al.  Molecular dynamics simulation of nano-lithography process using atomic force microscopy , 2002 .

[73]  Martin H. Müser,et al.  Towards an atomistic understanding of solid friction by computer simulations , 2002 .

[74]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[75]  Uzi Landman,et al.  Atomic-Scale Issues in Tribology: Interfacial Junctions and Nano-elastohydrodynamics† , 1996 .

[76]  D. Hills,et al.  A note on the influence of residual stress on measured hardness , 1984 .

[77]  W. Goddard,et al.  Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application , 1999 .

[78]  J. Harrison,et al.  The Effects of Film Structure and Surface Hydrogen on the Properties of Amorphous Carbon Films , 2003 .

[79]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[80]  D. Brenner,et al.  Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations , 2005 .

[81]  D. F. Ogletree,et al.  Atomic Force Microscopy Study of an Ideally Hard Contact: The Diamond(111)/Tungsten Carbide Interface , 1998 .

[82]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[83]  McClelland,et al.  Molecular dynamics study of sliding friction of ordered organic monolayers. , 1993, Physical review letters.

[84]  Sokoloff,et al.  Theory of energy dissipation in sliding crystal surfaces. , 1990, Physical review. B, Condensed matter.

[85]  Scott S. Perry,et al.  Sliding orientation effects on the tribological properties of polytetrafluoroethylene , 2007 .

[86]  A. Sutton Deformation mechanisms, electronic conductance and friction of metallic nanocontacts. , 1996 .

[87]  R. Colton,et al.  Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films , 1997 .

[88]  A. Volokitin,et al.  Adsorbate-induced enhancement of electrostatic noncontact friction. , 2005, Physical review letters.

[89]  Phillip V. Smith,et al.  Extension of the Brenner empirical interatomic potential to CSiH systems , 1996 .

[90]  Akio Yasukawa,et al.  Using An Extended Tersoff Interatomic Potential to Analyze The Static-Fatigue Strength of SiO2 under Atmospheric Influence , 1996 .

[91]  R. V. D. Oetelaar,et al.  Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy , 1997 .

[92]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[93]  James N. Glosli,et al.  Friction at the Atomic Scale , 1992 .

[94]  W. Sawyer,et al.  Effect of the sliding orientation on the tribological properties of polyethylene in molecular dynamics simulations , 2008 .

[95]  I. L. Singer,et al.  Friction and energy dissipation at the atomic scale: A review , 1994 .

[96]  Mate Cm,et al.  Atomic-force-microscope study of polymer lubricants on silicon surfaces. , 1992 .

[97]  Susan B. Sinnott,et al.  Molecular Dynamics Simulations of the Chemical Modification of Polystyrene through CxFy+ Beam Deposition , 2004 .

[98]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[99]  B. Persson Theory of friction: Dynamical phase transitions in adsorbed layers , 1995 .

[100]  Seunghwan Lee,et al.  Spiroalkanedithiol-Based SAMs Reveal Unique Insight into the Wettabilities and Frictional Properties of Organic Thin Films , 2000 .

[101]  Nelson,et al.  Semiempirical modified embedded-atom potentials for silicon and germanium. , 1989, Physical review. B, Condensed matter.

[102]  C. Mate,et al.  Nanotribology studies of carbon surfaces by force microscopy , 1993 .

[103]  Robert W. Carpick,et al.  Erratum: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope [J. Vac. Sci. Technol. B 14, 1289 (1996)] , 1996 .

[104]  Kenneth J. Tupper,et al.  Compression-induced structural transition in a self-assembled monolayer , 1994 .

[105]  Donald W. Brenner,et al.  Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces , 1993 .

[106]  Subhash Saini,et al.  Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study , 2003 .

[107]  A. Depristo,et al.  Theory of chemical bonding based on the atom–homogeneous electron gas system , 1991 .

[108]  Kouji Miura,et al.  Natural Rolling of Zigzag Multiwalled Carbon Nanotubes on Graphite , 2001 .

[109]  J. H. Cushman,et al.  Shear Forces in Molecularly Thin Films , 1989, Science.

[110]  Hisae Yoshizawa,et al.  Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules , 1993 .

[111]  A. Fasolino,et al.  Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model , 2005 .

[112]  G. Grest,et al.  Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. , 2004, Physical review letters.

[113]  T. Stolarski Modern Tribology Handbook , 2003 .

[114]  J. Harrison,et al.  Periodicities in the properties associated with the friction of model self-assembled monolayers , 2001 .

[115]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[116]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[117]  R. Carpick,et al.  Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[118]  C. Lieber,et al.  Load-Independent Friction: MoO3 Nanocrystal Lubricants , 1999 .

[119]  Peter S. Lomdahl,et al.  LARGE-SCALE MOLECULAR-DYNAMICS SIMULATION OF 19 BILLION PARTICLES , 2004 .

[120]  Seizo Morita,et al.  Spatially quantized friction with a lattice periodicity , 1996 .

[121]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[122]  J. Pethica,et al.  Inelastic flow processes in nanometre volumes of solids , 1990 .

[123]  Jacob N. Israelachvili,et al.  Origin and characterization of different stick-slip friction mechanisms , 1996 .

[124]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[125]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[126]  K. Enke,et al.  Some new results on the fabrication of and the mechanical, electrical and optical properties of i-carbon layers☆ , 1981 .

[127]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[128]  P. Reimann,et al.  Nonmonotonic velocity dependence of atomic friction. , 2004, Physical review letters.

[129]  J. Krim Atomic-Scale Origins of Friction† , 1996 .

[130]  Sokoloff Jb Microscopic mechanisms for kinetic friction: Nearly frictionless sliding for small solids , 1995 .

[131]  Susan B. Sinnott,et al.  INTERACTIONS OF CARBON-NANOTUBULE PROXIMAL PROBE TIPS WITH DIAMOND AND GRAPHENE , 1998 .

[132]  S. Perry,et al.  Systematic Studies of the Frictional Properties of Fluorinated Monolayers with Atomic Force Microscopy: Comparison of CF3- and CH3-Terminated Films , 1997 .

[133]  S. Sinnott,et al.  Carbon Nanotubes: Synthesis, Properties, and Applications , 2001 .

[134]  C. M. Mate,et al.  Force microscopy studies of the molecular origins of friction and lubrication , 1995, IBM J. Res. Dev..

[135]  J. Frommer,et al.  Force Microscopy Study of Friction and Elastic Compliance of Phase-Separated Organic Thin Films , 1994 .

[136]  I. F. Stowers,et al.  A molecular dynamics model of the orthogonal cutting process , 1990 .

[137]  A. Kingon,et al.  Multiscale analysis of liquid lubrication trends from industrial machines to micro-electrical-mechanical systems. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[138]  H. Miura,et al.  Molecular dynamics analysis of adhesion strength of interfaces between thin films , 2001 .

[139]  K. Katô,et al.  Mechanism of nanoscale indentation , 1993 .

[140]  Alexei Bolshakov,et al.  Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations , 1996 .

[141]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[142]  Donald W. Brenner,et al.  Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations , 1998 .

[143]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[144]  Steven D. Kenny,et al.  Modeling of stick-slip phenomena using molecular dynamics , 2004 .

[145]  W. Sawyer,et al.  First-principles determination of static potential energy surfaces for atomic friction in Mo S 2 and Mo O 3 , 2008 .

[146]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[147]  Hajime Takano,et al.  Elasticity, wear, and friction properties of thin organic films observed with atomic force microscopy , 1994 .

[148]  Schwarz,et al.  Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. , 1995, Physical review. B, Condensed matter.

[149]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[150]  Abraham Nitzan,et al.  Surface science lettersDynamics of tip-substrate interactions in atomic force microscopy☆ , 1989 .

[151]  R. Nemanich,et al.  Temperature Dependence of Single-Asperity Diamond−Diamond Friction Elucidated Using AFM and MD Simulations , 2008 .

[152]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[153]  C. S. Bhatia,et al.  Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks , 1995 .

[154]  D. J. Adams,et al.  Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid , 1975 .

[155]  M. Stevens,et al.  Friction between Alkylsilane Monolayers: Molecular Simulation of Ordered Monolayers , 2002 .

[156]  Donald W. Brenner,et al.  Molecular Dynamics Simulations of Carbon Nanotube Rolling and Sliding on Graphite , 2000 .

[157]  Bharat Bhushan,et al.  Modern tribology handbook, Volume 1 , 2001 .

[158]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[159]  Foiles,et al.  Application of the embedded-atom method to liquid transition metals. , 1985, Physical review. B, Condensed matter.

[160]  Udo D. Schwarz,et al.  Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds , 1997 .

[161]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[162]  R. Colton,et al.  Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope , 1989 .

[163]  Judith A. Harrison,et al.  Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential , 2008 .

[164]  Sidney R. Cohen,et al.  Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces , 1993 .

[165]  Was,et al.  Application of molecular dynamics to the study of hydrogen embrittlement in Ni-Cr-Fe alloys. , 1989, Physical review. B, Condensed matter.

[166]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[167]  D. Galvão,et al.  Molecular dynamics simulations of C60 nanobearings , 2004 .

[168]  Alan B. Tutein,et al.  Indentation Analysis of Linear-Chain Hydrocarbon Monolayers Anchored to Diamond , 1999 .

[169]  T. Thundat,et al.  Atomic force microscope investigation of C60 adsorbed on silicon and mica , 1993 .

[170]  Krim,et al.  Nanotribology of a Kr monolayer: A quartz-crystal microbalance study of atomic-scale friction. , 1991, Physical review letters.

[171]  A. Pokropivny,et al.  Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface , 1997 .

[172]  J. Harrison,et al.  Molecular dynamics investigations of the effects of debris molecules on the friction and wear of diamond , 1996 .

[173]  U. Landman,et al.  Nanomechanics and dynamics of tip–substrate interactions , 1991 .

[174]  Bo N. J. Persson,et al.  Physics of sliding friction , 1996 .

[175]  J. Schall,et al.  Elucidating atomic-scale friction using molecular dynamics and specialized analysis techniques , 2008 .

[176]  J. H. Cushman,et al.  Transient coexisting nanophases in ultrathin films confined between corrugated walls , 1994 .

[177]  T. Okada,et al.  The two-dimensional stick-slip phenomenon with atomic resolution , 1993 .

[178]  Statistical Mechanics and Thermodynamics of Simulated Ionic Solutions , 2002 .

[179]  Donald W. Brenner,et al.  Computational Modeling of Nanometer-Scale Tribology , 2005 .

[180]  Clifford W. Padgett,et al.  A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations , 2005 .

[181]  Bharat Bhushan,et al.  Fullerene (C60) Films for Solid Lubrication , 1993 .

[182]  B. Bhushan,et al.  Nanoindentation studies of sublimed fullerene films using atomic force microscopy , 1993 .

[183]  Hari Singh Nalwa,et al.  Handbook of nanostructured materials and nanotechnology , 2000 .

[184]  M. Gad-el-Hak The MEMS Handbook , 2001 .

[185]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[186]  I. L. Singer A thermochemical model for analyzing low wear-rate materials , 1991 .

[187]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[188]  K. Komvopoulos,et al.  Molecular dynamics simulation of single and repeated indentation , 1997 .

[189]  A. Volokitin,et al.  Electronic friction of physisorbed molecules , 1995 .

[190]  J. Frommer,et al.  Friction measurements on phase-separated thin films with a modified atomic force microscope , 1992, Nature.

[191]  Kroll,et al.  Amorphization and conductivity of silicon and germanium induced by indentation. , 1988, Physical review letters.

[192]  Jacob N. Israelachvili,et al.  Intermolecular and surface forces : with applications to colloidal and biological systems , 1985 .

[193]  H. Dimigen,et al.  Frictional properties of diamondlike carbon layers , 1980 .

[194]  J. Harrison,et al.  Packing-Density Effects on the Friction of n-Alkane Monolayers , 2001 .

[195]  Y. Kawazoe,et al.  Computational Materials Science: From Ab Initio to Monte Carlo Methods , 2000 .

[196]  S. Sinnott,et al.  Effect of molecular interactions on carbon nanotube friction , 2007 .

[197]  Koji Kato,et al.  Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM , 1996 .

[198]  B. Bhushan Nanotribology and nanomechanics , 2005 .

[199]  Adrian P. Sutton,et al.  Electronic Structure of Materials , 1993 .

[200]  Susan B. Sinnott,et al.  Tribological properties of carbon nanotube bundles predicted from atomistic simulations , 2001 .

[201]  U. Landman,et al.  Atomistic mechanisms of adhesive contact formation and interfacial processes , 1992 .

[202]  B. Persson,et al.  Variation of the DC-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4 , 1992 .

[203]  N. Sasaki,et al.  C60 molecular bearings. , 2003, Physical review letters.

[204]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[205]  Meyer,et al.  Friction and wear of Langmuir-Blodgett films observed by friction force microscopy. , 1992, Physical review letters.

[206]  D. Heermann Computer Simulation Methods in Theoretical Physics , 1986 .

[207]  Donald W. Brenner,et al.  Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data , 2004 .

[208]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[209]  Seunghwan Lee,et al.  The Influence of Packing Densities and Surface Order on the Frictional Properties of Alkanethiol Self-Assembled Monolayers (SAMs) on Gold: A Comparison of SAMs Derived from Normal and Spiroalkanedithiols , 2000 .

[210]  J. Sokoloff Possible microscopic explanation of the virtually universal occurrence of static friction , 2002 .

[211]  Farkas,et al.  Empirical many-body interatomic potential for bcc transition metals. , 1991, Physical review. B, Condensed matter.

[212]  G. McClelland,et al.  Atomic-scale friction of a tungsten tip on a graphite surface. , 1987, Physical review letters.

[213]  J. Tully Dynamics of gas–surface interactions: 3D generalized Langevin model applied to fcc and bcc surfaces , 1980 .

[214]  Hashem Rafii-Tabar,et al.  Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys , 1991 .

[215]  J. Sokoloff Theory of dynamical friction between idealized sliding surfaces , 1984 .

[216]  Shaoyi Jiang,et al.  Tip-Based Hybrid Simulation Study of Frictional Properties of Self-Assembled Monolayers: Effects of Chain Length, Terminal Group, Scan Direction, and Scan Velocity , 2003 .

[217]  S. Sinnott Theory of atomic-scale friction , 2000 .

[218]  E. Lacaze,et al.  Tip-surface interactions in STM experiments on Au(111): Atomic-scale metal friction , 1996 .

[219]  J. Israelachvili Adhesion, Friction and Lubrication of Molecularly Smooth Surfaces , 1992 .

[220]  Friction between Si tip and (001)-2×1 surface: A molecular dynamics simulation , 2002 .

[221]  Hong Liang,et al.  Mechanical Tribology: Materials, Characterization, and Applications , 2009 .

[222]  Uzi Landman,et al.  Structural and dynamical consequences of interactions in interfacial systems , 1989 .

[223]  R. Wiesendanger,et al.  Low-load friction behavior of epitaxial C60 monolayers , 1995 .

[224]  Y. Inoue,et al.  Magnetite scale cluster adhesion on metal oxides surfaces: atomistic simulation study , 2001 .

[225]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[226]  Donald W. Brenner,et al.  Tersoff-Type Potentials for Carbon, Hydrogen and Oxygen , 1988 .

[227]  D. Pettifor,et al.  Electron theory in alloy design , 1992 .

[228]  J. Sokoloff Static friction between elastic solids due to random asperities. , 2000, Physical review letters.

[229]  Brenner Relationship between the embedded-atom method and Tersoff potentials. , 1989, Physical review letters.

[230]  J. Field,et al.  Friction of diamond on diamond and chemical vapour deposition diamond coatings , 1991 .

[231]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[232]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[233]  I. L. Singer,et al.  Friction and wear behavior of TiN in air : the chemistry of transfer films and debris formation , 1991 .

[234]  J. Harrison,et al.  Contact forces at the sliding interface: mixed versus pure model alkane monolayers. , 2005, The Journal of chemical physics.

[235]  H. V. Swygenhoven,et al.  Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation , 2004 .

[236]  Minowa,et al.  Stress-induced amorphization of silicon crystal by mechanical scratching. , 1992, Physical review letters.

[237]  Jacobsen,et al.  Simulations of atomic-scale sliding friction. , 1996, Physical review. B, Condensed matter.

[238]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[239]  M. Salmeron,et al.  Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. , 1997, Chemical reviews.

[240]  K. Binder,et al.  Friction between Polymer Brushes in Good Solvent Conditions: Steady-State Sliding versus Transient Behavior , 2003 .

[241]  Susan B. Sinnott,et al.  A reactive empirical bond order (REBO) potential for hydrocarbon oxygen interactions , 2004 .

[242]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[243]  Y. Sugawara,et al.  Study on the stick‐slip phenomenon on a cleaved surface of the Muscovite mica using an atomic force/lateral force microscope , 1994 .

[244]  Klaus Rademann,et al.  Contact area dependence of frictional forces: Moving adsorbed antimony nanoparticles , 2005 .

[245]  Iwao Watanabe,et al.  Friction and Wear Behavior of Hard Carbon Films , 1987 .

[246]  Tosatti,et al.  Layering transition in confined molecular thin films: Nucleation and growth. , 1994, Physical review. B, Condensed matter.

[247]  M. Porter,et al.  Mapping Orientation Differences of Terminal Functional Groups by Friction Force Microscopy , 1998 .

[248]  Jian Ping Lu,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999 .

[249]  M. Salmeron,et al.  A comparative AFM study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111) , 2001 .

[250]  Wooten,et al.  Molecular dynamics of silicon indentation. , 1993, Physical review. B, Condensed matter.

[251]  Bharat Bhushan,et al.  Atomic‐scale and microscale friction studies of graphite and diamond using friction force microscopy , 1994 .

[252]  J. Joannopoulos,et al.  Mechanical hysteresis on an atomic scale , 1995 .

[253]  D. Bonnell Scanning tunneling microscopy and spectroscopy: Theory, techniques, and applications , 1993 .

[254]  J. Harrison,et al.  Universal Aspects of the Atomic-Scale Friction of Diamond Surfaces , 1995 .

[255]  E. Meyer,et al.  Wear, friction and sliding speed correlations on Langmuir-Blodgett films observed by atomic force microscopy , 1994 .

[256]  Pasianot,et al.  Embedded-atom-method interatomic potentials for hcp metals. , 1992, Physical review. B, Condensed matter.

[257]  Liangchi Zhang,et al.  Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation , 2000 .

[258]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[259]  García,et al.  Interatomic forces in scanning tunneling microscopy: Giant corrugations of the graphite surface. , 1986, Physical review letters.

[260]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[261]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[262]  J. Harrison,et al.  Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. , 2002, Journal of the American Chemical Society.

[263]  L. Howald,et al.  Sled-Type Motion on the Nanometer Scale: Determination of Dissipation and Cohesive Energies of C60 , 1994, Science.

[264]  Harrison,et al.  Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. , 1992, Physical review. B, Condensed matter.

[265]  G. Ackland,et al.  Simple N-body potentials for the noble metals and nickel , 1987 .

[266]  Donald W. Brenner,et al.  Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces , 1993 .

[267]  J. Pethica,et al.  Static junction growth during frictional sliding of metals , 1992 .

[268]  U. Landman,et al.  Nanotribology and the Stability of Nanostructures , 1993 .

[269]  Donald W. Brenner,et al.  Simulated Tribochemistry: An Atomic-Scale View of the Wear of Diamond , 1994 .

[270]  Theory of Electron and Phonon Contributions to Sliding Friction , 1996 .

[271]  D. Brenner,et al.  Nanoindentation as a Probe of Nanoscale Residual Stresses: Atomistic Simulation Results , 2000 .

[272]  J. Wilks,et al.  The friction of diamond sliding on diamond , 1988 .

[273]  Abraham Nitzan,et al.  Dynamics of tip-substrate interactions in atomic force microscopy☆ , 1989 .

[274]  Q. Ouyang,et al.  Nano-ball bearing effect of ultra-fine particles of cluster diamond , 1994 .

[275]  George U. Oppel,et al.  Biaxial elasto-plastic analysis of load and residual stresses , 1964 .

[276]  B. Persson Applications of surface resistivity to atomic scale friction, to the migration of ‘‘hot’’ adatoms, and to electrochemistry , 1993 .

[277]  Atomistic Simulation of the Nanoindentation of Diamond and Graphite Surfaces , 1991 .

[278]  J C Hamilton,et al.  Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. , 2002, Physical review letters.

[279]  D. F. Ogletree,et al.  Variation of the Interfacial Shear Strength and Adhesion of a Nanometer-Sized Contact , 1996 .

[280]  Russell M. Taylor,et al.  Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG , 2000 .

[281]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[282]  Ranga Komanduri,et al.  Molecular dynamics simulation of atomic-scale friction , 2000 .

[283]  Charles M. Lieber,et al.  Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy , 1996, Science.