Exhaustive global grid search in computing receiver position from modular satellite range measurements

A global grid search algorithm with an application in weak signal satellite positioning is implemented and tested numerically. The algorithm consists of local Gauss-Newton search and a global starting point chooser, and it can be generalized as a global optimization method for functions with an attraction basin of computable minimum radius. The method is shown to .nd the global minimum in a bounded region in predictable time.

[1]  Elliott D. Kaplan Understanding GPS : principles and applications , 1996 .

[2]  R. Fletcher Practical Methods of Optimization , 1988 .

[3]  Joseph Leva,et al.  An alternative closed-form solution to the GPS pseudo-range equations , 1995 .

[4]  J. Chaffee,et al.  Existence and uniqueness of GPS solutions , 1991 .

[5]  K. Radio,et al.  An Algebraic Solution of the GPS Equations , 1985 .

[6]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[7]  D.J. Dailey,et al.  A method for GPS positioning , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Arieh Iserles Matrix computations (2nd edition) , by G. H. Golub and C. F. Van Loan. Pp 642. £38. 1989. ISBN 0-8018-3772-3 (John Hopkins Press) , 1990 .

[9]  Michael J. Rycroft,et al.  Understanding GPS. Principles and Applications , 1997 .

[10]  J. Syrjarinne Time recovery through fusion of inaccurate network timing assistance with GPS measurements , 2000, Proceedings of the Third International Conference on Information Fusion.

[11]  Peiliang Xu A hybrid global optimization method: the multi-dimensional case , 2003 .

[12]  J. Syrjärinne,et al.  Studies of Modern Techniques for Personal Positioning , 2001 .

[13]  A. Galántai The theory of Newton's method , 2000 .

[14]  Jari Syrjärinne,et al.  GPS Position Can Be Computed without the Navigation Data , 2002 .

[15]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.