Freestanding and Permeable Nanoporous Gold Membranes for Surface-Enhanced Raman Scattering.

Surface-enhanced Raman spectroscopy (SERS) demands reliable, high-enhancement substrates in order to be used in different fields of application. Here we introduce freestanding porous gold membranes (PAuM) as easy-to-produce, scalable, mechanically stable, and effective SERS substrates. We fabricate large-scale sub-30 nm thick PAuM that form freestanding membranes with varying morphologies depending on the nominal gold thickness. These PAuM are mechanically stable for pressures up to more than 3 bar and exhibit surface-enhanced Raman scattering with local enhancement factors from 104 to 105, which we demonstrate by wavelength-dependent and spatially resolved Raman measurements using graphene as a local Raman probe. Numerical simulations reveal that the enhancement arises from individual, nanoscale pores in the membrane acting as optical slot antennas. Our PAuM are mechanically stable, provide robust SERS enhancement for excitation power densities up to 106 W cm-2, and may find use as a building block in SERS-based sensing applications.

[1]  S. Reich,et al.  Experimental tests of surface‐enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory , 2020, Journal of Raman Spectroscopy.

[2]  Jeremy J. Baumberg,et al.  Present and Future of Surface-Enhanced Raman Scattering , 2019, ACS nano.

[3]  Kyoungjun Choi,et al.  Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation , 2018, Science Advances.

[4]  A. Vijayaraghavan,et al.  Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes , 2018, Nanotechnology.

[5]  L. Lagae,et al.  High spatial resolution nanoslit SERS for single-molecule nucleobase sensing , 2018, Nature Communications.

[6]  S. Reich,et al.  Graphene as a local probe to investigate near-field properties of plasmonic nanostructures , 2018 .

[7]  S. Reich,et al.  Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy , 2017, 1703.09592.

[8]  N. Mortensen,et al.  Enhancement of two-photon photoluminescence and SERS for low-coverage gold films. , 2016, Optics express.

[9]  P. Unwin,et al.  Versatile Polymer-Free Graphene Transfer Method and Applications. , 2016, ACS applied materials & interfaces.

[10]  V. Dravid,et al.  Locally enhanced surface plasmons and modulated “hot-spots” in nanoporous gold patterns on atomically thin MoS2 with a comparison to SiO2 substrate , 2016 .

[11]  D. Galvão,et al.  Graphene healing mechanisms: A theoretical investigation , 2016, 1601.01848.

[12]  Ki-Hun Jeong,et al.  Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands , 2015, Scientific Reports.

[13]  S. Dushman Production and Measurement of High Vacuum , 2015 .

[14]  Nikolai G Khlebtsov,et al.  Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. , 2015, ACS applied materials & interfaces.

[15]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[16]  Xiaoji G. Xu,et al.  Accessing the Optical Magnetic Near-Field through Babinet’s Principle , 2014 .

[17]  Luis M Liz-Marzán,et al.  Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. , 2014, ACS nano.

[18]  Håkan Olin,et al.  Porous Gold Films—A Short Review on Recent Progress , 2014, Materials.

[19]  Jakob Buchheim,et al.  Ultimate Permeation Across Atomically Thin Porous Graphene , 2014, Science.

[20]  S. Reich,et al.  Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities , 2014, Nano letters.

[21]  Patrick Onck,et al.  On the localized surface plasmon resonance modes in nanoporous gold films , 2014 .

[22]  S. Reich,et al.  Strained graphene as a local probe for plasmon‐enhanced Raman scattering by gold nanostructures , 2013 .

[23]  Wei Zhang,et al.  Ultra‐Sensitive Graphene‐Plasmonic Hybrid Platform for Label‐Free Detection , 2013, Advanced materials.

[24]  M. Hentschel,et al.  Babinet to the half: coupling of solid and inverse plasmonic structures. , 2013, Nano letters.

[25]  S. Roth,et al.  From atoms to layers: in situ gold cluster growth kinetics during sputter deposition. , 2013, Nanoscale.

[26]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[27]  J. Götte Principles of Nano-Optics, 2nd edn., by Lukas Novotny and Bert Hecht , 2013 .

[28]  E. Pop,et al.  High-field electrical and thermal transport in suspended graphene. , 2013, Nano letters.

[29]  Stephanie Reich,et al.  Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene. , 2013, Nano letters.

[30]  Alexander Urich,et al.  Silver nanoisland enhanced Raman interaction in graphene , 2012 .

[31]  Yahong Xie,et al.  Giant optical response from graphene--plasmonic system. , 2012, ACS nano.

[32]  V. Kravets,et al.  Surface Hydrogenation and Optics of a Graphene Sheet Transferred onto a Plasmonic Nanoarray , 2012 .

[33]  Mingwei Chen,et al.  Single molecule detection from a large-scale SERS-active Au79Ag21 substrate , 2011, Scientific reports.

[34]  Duncan Graham,et al.  Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications , 2011, Applied spectroscopy.

[35]  Yang Jiao,et al.  Patterned nanoporous gold as an effective SERS template , 2011, Nanotechnology.

[36]  Jian Zi,et al.  Localized surface plasmon resonance of nanoporous gold , 2011 .

[37]  M. Kappes,et al.  Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. , 2010, Nano letters.

[38]  Elefterios Lidorikis,et al.  Surface-enhanced Raman spectroscopy of graphene. , 2010, ACS nano.

[39]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[40]  L. Lagae,et al.  Focusing plasmons in nanoslits for surface-enhanced Raman scattering. , 2009, Small.

[41]  B. Park,et al.  Interference effect on Raman spectrum of graphene on SiO 2 / Si , 2009, 0908.4322.

[42]  Peter Rodgers,et al.  Nanoscience and technology : a collection of reviews from nature journals , 2009 .

[43]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[44]  Jing Kong,et al.  Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates , 2008 .

[45]  Toshiaki Kondo,et al.  Surface-enhanced Raman Scattering on Ordered Gold Nanodot Arrays Prepared from Anodic Porous Alumina Mask , 2008 .

[46]  M. Sepaniak,et al.  Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. , 2008, ACS nano.

[47]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[48]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[49]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[50]  Takeshi Fujita,et al.  Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements , 2007 .

[51]  J. Hafner,et al.  Plasmon resonances of a gold nanostar. , 2007, Nano letters.

[52]  W. Knoll,et al.  Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. , 2006, Analytical chemistry.

[53]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[54]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[55]  A. Hamza,et al.  Microscopic failure behavior of nanoporous gold , 2005 .

[56]  F. García-Vidal,et al.  Transmission of light through a single rectangular hole. , 2005, Physical review letters.

[57]  Jonah Erlebacher,et al.  Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material , 2004 .

[58]  N. V. van Hulst,et al.  Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. , 2004, Physical review letters.

[59]  K. Koga,et al.  Size- and temperature-dependent structural transitions in gold nanoparticles. , 2004, Physical review letters.

[60]  K. Kavanagh,et al.  Strong polarization in the optical transmission through elliptical nanohole arrays. , 2004, Physical review letters.

[61]  Lars Hultman,et al.  Microstructural evolution during film growth , 2003 .

[62]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[63]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[64]  Li,et al.  Ductile-brittle transition in random porous Au. , 1992, Physical review letters.

[65]  W. Steckelmacher The effect of cross-sectional shape on the molecular flow in long tubes , 1978 .

[66]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[67]  P. Clausing,et al.  Über die Strömung sehr verdünnter Gase durch Röhren von beliebiger Länge , 1932 .