An analysis of the performance of heterojunction phototransistors for fiber optic communications

The theory of operation of the heterojunction phototransistor (HPT) is reviewed and the limitations on gain and speed-of-response are examined in the context of fiber optic systems requirements. The response of the base potential is shown to depend on the input optical power, and this dependence results in a power-dependent gain-bandwidth product, fT. Model calculations assuming optimized device structures suitable for multimode and single-mode systems operating in the 1.3-1.55-µm spectral region are used to demonstrate the consequences of this dependence. The results indicate that the HPT can have sufficient gain and speed-of-response for particular applications if a dc bias (optical or electrical) is used. The noise sources,S/N, and sensitivity of the optimized devices are discussed to clarify system applicability.

[1]  Makoto Konagai,et al.  (GaAl)As‐GaAs heterojunction transistors with high injection efficiency , 1975 .

[2]  R.G. Smith,et al.  Photodetectors for fiber transmission systems , 1980, Proceedings of the IEEE.

[3]  Makoto Konagai,et al.  (GaAl)As/GaAs heterojunction phototransistors with high current gain , 1977 .

[4]  T. H. Windhorn,et al.  Al0.5Ga0.5As‐GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition , 1979 .

[5]  J. J. Hsieh,et al.  GaInAsP/InP Avalanche Photodiodes* , 1978, Integrated and Guided Wave Optics.

[6]  William Shockley,et al.  p − n Junction Transistors , 1951 .

[7]  I. Deyhimy,et al.  High sensitivity optical receivers for 1.0-1.4 µm fiber-optic systems , 1978 .

[8]  J. J. Hsieh,et al.  Room‐temperature cw operation of buried‐stripe double‐heterostructure GaInAsP/InP diode lasers , 1977 .

[9]  Y. Suematsu,et al.  In 1-x Ga x As y P 1-y /InP DH lasers fabricated on InP , 1978 .

[10]  G. E. Stillman,et al.  Chapter 5 Avalanche Photodiodes , 1977 .

[11]  James S. Harris,et al.  1.0–1.4‐μm high‐speed avalanche photodiodes , 1978 .

[12]  H. Melchior,et al.  Photodetectors for optical communication systems , 1970 .

[13]  T. Moriizumi,et al.  Theoretical analysis of heterojunction phototransistors , 1972 .

[14]  R. Nahory,et al.  High‐efficiency In1−xGaxAsyP1−y/InP photodetectors with selective wavelength response between 0.9 and 1.7 μm , 1978 .

[15]  T.G. Giallorenzi,et al.  Optical communications research and technology: Fiber optics , 1978, Proceedings of the IEEE.

[16]  H. Beneking,et al.  High-gain wide-gap-emitter Ga1-xAlxAs-GaAs phototransistor , 1976 .

[17]  M. Umeno,et al.  High‐sensitivity InGaAsP/InP phototransistors , 1980 .

[18]  Tingye Li,et al.  Research toward optical-fiber transmission systems , 1973 .

[19]  W. Hitchens,et al.  IIA-4 Low threshold LPE In1-x',Gax',P1-z',Asz',/In1-xGaxP1-zAsz/In1-x',Gax,P1-z',Asz', yellow double heterojunction laser diodes (J < 104A/cm2, λ ≈ 5850 Å, 77°K) , 1975 .

[20]  P. Wright,et al.  High‐gain InGaAsP‐InP heterojunction phototransistors , 1980 .

[21]  Herbert Kroemer,et al.  Theory of a Wide-Gap Emitter for Transistors , 1957, Proceedings of the IRE.

[22]  D. L. Feucht,et al.  Performance potential of high-frequency heterojunction transistors , 1970 .

[23]  D. Fritzsche,et al.  Fast response InP/InGaAsP heterojunction phototransistors , 1981 .

[24]  Y. Mizushima,et al.  Performance of p-i-n photodiode compared with avalance photodiode in the longer-wavelength region of 1 to 2 μm , 1977 .

[25]  D. Wake,et al.  p-i-nf.e.t. hybrid optical receiver for 1.1-1.6 μm optical communication systems , 1980 .

[26]  Kamal Tabatabaie-Alavi,,et al.  Recent Advances In InGaAsP/InP Phototransistors , 1981, Photonics West - Lasers and Applications in Science and Engineering.

[27]  H. Barrett,et al.  Computerized tomography: taking sectional x rays , 1977 .

[28]  J. J. Hsieh,et al.  1000-Hour Continuous CW Operation Of Double-Heterostructure GaInAsP/Inp Lasers , 1977 .