Exact quantum algorithm to distinguish Boolean functions of different weights

In this work, we exploit the Grover operator for the weight analysis of a Boolean function, specifically to solve the weight-decision problem. The weight w is the fraction of all possible inputs for which the output is 1. The goal of the weight-decision problem is to find the exact weight w from the given two weights w1 and w2 satisfying a general weight condition as w1 + w2 = 1 and 0 <w 1 <w 2 < 1. First, we propose a limited weightdecision algorithm where the function has another constraint: a weight is in � w1 = sin 2 � k

[1]  John P. Hayes,et al.  Cumulative balance testing of logic circuits , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[2]  Alberto Galindo,et al.  Family of Grover’s quantum-searching algorithms , 2000 .

[3]  John P. Hayes,et al.  Balance testing and balance-testable design of logic circuits , 1996, J. Electron. Test..

[4]  P. Høyer Arbitrary phases in quantum amplitude amplification , 2000, quant-ph/0006031.

[5]  Che-Ming Li,et al.  General SU(2) formulation for quantum searching with certainty , 2002 .

[6]  J. Dai,et al.  Mean field theory on the incommensurate ground state of the zigzag spin chain , 2002 .

[7]  Yang Sun,et al.  Phase matching condition for quantum search with a generalized initial state , 2002 .

[8]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[9]  Michele Mosca,et al.  Counting by quantum eigenvalue estimation , 2001, Theor. Comput. Sci..

[10]  Subhamoy Maitra,et al.  Deutsch-Jozsa Algorithm Revisited in the Domain of Cryptographically Significant Boolean Functions , 2004 .

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[12]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[13]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[14]  G. Long Grover algorithm with zero theoretical failure rate , 2001, quant-ph/0106071.

[15]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[17]  Felix Wu,et al.  The quantum query complexity of approximating the median and related statistics , 1998, STOC '99.

[18]  Dafa Li,et al.  More general quantum search algorithm Q=−IγVIτU and the precise formula for the amplitude and the non-symmetric effects of different rotating angles , 2001, quant-ph/0105035.

[19]  Randall Pruim,et al.  Relativized separation of EQP from PNP , 2001, Inf. Process. Lett..

[20]  Eric Filiol,et al.  Highly Nonlinear Balanced Boolean Functions with a Good Correlation-Immunity , 1998, EUROCRYPT.

[21]  Edward M. Reingold,et al.  Determining the Majority , 1993, Inf. Process. Lett..

[22]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[24]  G. Long,et al.  An SO(3) picture for quantum searching , 2001 .

[25]  Glynn Winskel,et al.  Proceedings of the 25th International Colloquium on Automata, Languages and Programming , 1998 .

[26]  Amílcar Sernadas,et al.  Quantum Computation and Information , 2006 .

[27]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[28]  Eric Filiol,et al.  Designs, Intersecting Families, and Weight of Boolean Functions , 1999, IMACC.

[29]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .